Original Article
Abad, J., Caleda, B., Chacon, E., Gutierrez, V., and Hidlgo, E., 1984, Application of geomechanical classification to predict the convergence of coal mine galleries and to design their supports, Congress on Rock Mech., (E), 15-19.
Alemdag, S., Gurocak, Z., and Gokceoglu, C., 2015, A simple regression based approach to estimate deformation modulus of rock masses, Journal of African Earth Sciences, 110, 75-80.
10.1016/j.jafrearsci.2015.06.011Aydan, Ö., Akagi, T., and Kawamoto, T., 1993, The squeezing potential of rocks around tunnels; theory and prediction, Rock Mechanics and Rock Engineering, 26(2), 137-163.
10.1007/BF01023620Aydan, Ö., Ulusay, R., and Kawamoto, T., 1997, Assessment of rock mass strength for underground excavations.International Journal of Rock Mechanics and Mining Sciences, 34(3-4), 18-e1.
10.1016/S1365-1609(97)00273-6Azizi, F., Koopialipoor, M., and Khoshrou, H., 2019, Estimation of rock mass squeezing potential in tunnel route (case study: Kerman water conveyance tunnel), Geotechnical and Geological Engineering, 37, 1671-1685.
10.1007/s10706-018-0714-5Bellapu, H.V.S., Sinha, R.K., and Naik, S.R., 2023, Estimation of modulus of deformation using rock mass rating-a review and validation using 3D numerical modelling, Sustainability, 15(7), 5721.
10.3390/su15075721Boinee, P., Angelis, A.D., and Foresti, G.L., 2005, Meta random forests, International Journal of Computational Intelligence, 2(3), 138-147.
Boser, B.E., Guyon, I.M., and Vapnik, V.N., 1992, A training algorithm for optimal margin classifiers. InProceedings of the fifth annual workshop on Computational Learning Theory, pp. 144-152.
10.1145/130385.130401Brandenburg, Minke, 2017, Text classification of Dutch police records, Utrecht University Artificial Intelligence, Unpublished Master's thesis.
Cameron-Clarke, I.S., and Budavari, S., 1981, Correlation of rock mass classification parameters obtained from bore core and insitu observations, Engineering Geology, 17, 19-53.
10.1016/0013-7952(81)90019-3Chen, Y., Li, T., Zeng, P., Ma, J., Patelli, E., and Edwards, B., 2020, Dynamic and probabilistic multi-class prediction of tunnel squeezing intensity, Rock Mechanics and Rock Engineering, 53, 3521-3542.
10.1007/s00603-020-02138-8Chun, B.S., Lee, Y.J., and Jung, S.H., 2006, The evaluation for estimation method of deformation modulus of rock mass using RMR system, Journal of the Korean GEO-Environmental Society, 7(2), 25-32.
Diederichs, M.S., and Kaiser, P.K., 1999, Stability of large excavations in laminated hard rock masses: the voussoir analogue revisited, International Journal of Rock Mechanics and Mining Sciences, 36(1), 97-117.
10.1016/S0148-9062(98)00180-6Feng, X., and Jimenez, R., 2015, Predicting tunnel squeezing with incomplete data using Bayesian networks, Engineering Geology, 195, 214-224.
10.1016/j.enggeo.2015.06.017Ghasemi, E., and Gholizadeh, H., 2019, Prediction of squeezing potential in tunneling projects using data mining-based techniques, Geotechnical and Geological Engineering, 37, 1523-1532.
10.1007/s10706-018-0705-6Gokceoglu, C.A.N.D.A.N., Sonmez, H., and Kayabasi, A., 2003, Predicting the deformation moduli of rock masses.International Journal of Rock Mechanics and Mining Sciences, 40(5), 701-710.
10.1016/S1365-1609(03)00062-5Guo, H., Wang, J., Ao, W., and He, Y., 2018, SGB‐ELM: an advanced stochastic gradient boosting‐based ensemble scheme for extreme learning machine, Computational Intelligence and Neuroscience, 2018(1), 4058403.
10.1155/2018/405840330046300PMC6038681Hoek, E., and Marinos, P., 2000, Predicting tunnel squeezing problems in weak heterogeneous rock masses, Tunnels and Tunneling International, 32(11), 45-51.
Huang, Z., Liao, M., Zhang, H., Zhang, J., Ma, S., and Zhu, Q., 2022, Predicting tunnel squeezing using the SVM-BP combination mode, Geotechnical and Geological Engineering, 40(3), 1387-1405.
10.1007/s10706-021-01970-1Jethwa, J.L., Singh, B., and Singh, B., 1984, Estimation of ultimate rock pressure for tunnel linings under squeezing rock conditions, InDesign and Performance of Underground Excavations: ISRM Symposium-Cambridge, 3-6 September 1984, pp. 231-238.
Jimenez, R., and Recio, D., 2011, A linear classifier for probabilistic prediction of squeezing conditions in Himalayan tunnels, Engineering Geology, 121(3-4), 101-109.
10.1016/j.enggeo.2011.05.006Kayabasi, A., Gokceoglu, C.A.N.D.A.N., and Ercanoglu, M.U.R.A.T, 2003, Estimating the deformation modulus of rock masses: a comparative study, International Journal of Rock Mechanics and Mining Sciences, 40(1), 55-63.
10.1016/S1365-1609(02)00112-0Laderian, A., and Abaspoor, M.A., 2012, The correlation between RMR and Q systems in parts of Iran, Tunnelling and Underground Space Technology, 27(1), 149-158.
10.1016/j.tust.2011.06.001Lee, S., and Ahn, T.H., 2005, A Study on the Characteristics of Tunnel Based on the Rock Mass Classification, Journal of the Korean Ceotechnical Society, 21(3), 19-25.
Lundberg, S., 2017, A unified approach to interpreting model predictions, arXiv preprint arXiv:1705.07874.
Mahmoodi, A., Hashemi, L., Jasemi, M., Laliberté, J., Millar, R.C., and Noshadi, H., 2023, A novel approach for candlestick technical analysis using a combination of the support vector machine and particle swarm optimization, Asian Journal of Economics and Banking, 7(1), 2-24.
10.1108/AJEB-11-2021-0131Mohammadi, H., and Rahmannejad, R., 2010, The estimation of rock mass deformation modulus using regression and artificial neural networks analysis, Arabian Journal for Science and Engineering, 35(1), 205.
Moreno Tallon, E., 1980, Application de las classificaciones geomechnicas a los tuneles de parjares, II Cursode sostenimientos activosen galeriasy tunnels.
Read, S.A.L., Perrin, N.D., and Richards, L.R., 1999, Applicability of the Hoek-Brown failure criterion to New Zealand greywacke rocks, ISRM, ISRM-9CONGRESS.
Rutledge, J.C., and Perston, R.L., 1978, Experience with engineering classifications of rock. In: Proc, Int. Tunnelling Sym., A3.1-A3.7.
Shafiei, A., Parsaei, H., and Dusseault, M.B., 2012, Rock squeezing prediction by a support vector machine classifier, InARMA US Rock Mechanics/Geomechanics Symposium, 24(27), 2012-435.
Shen, J., Karakus, M., and Xu, C., 2012, A comparative study for empirical equations in estimating deformation modulus of rock masses, Tunnelling and Underground Space Technology, 32, 245-250.
10.1016/j.tust.2012.07.004Singh, B., Jethwa, J.L., Dube, A.K., and Singh, B., 1992, Correlation between observed support pressure and rock mass quality, Tunnelling and Underground Space Technology, 7(1), 59-74.
10.1016/0886-7798(92)90114-WSun, Y., Feng, X., and Yang, L., 2018, Predicting tunnel squeezing using multiclass support vector machines.Advances in Civil Engineering, 2018(1), 4543984.
10.1155/2018/4543984- Publisher :Korean Society for Rock Mechanics and Rock Engineering
- Publisher(Ko) :한국암반공학회
- Journal Title :Tunnel and Underground Space
- Journal Title(Ko) :터널과 지하공간
- Volume : 34
- No :6
- Pages :735-749
- Received Date : 2024-11-26
- Revised Date : 2024-12-06
- Accepted Date : 2024-12-09
- DOI :https://doi.org/10.7474/TUS.2024.34.6.735