All Issue

2024 Vol.34, Issue 6 Preview Page

Original Article

31 December 2024. pp. 735-749
Abstract
References
1

Abad, J., Caleda, B., Chacon, E., Gutierrez, V., and Hidlgo, E., 1984, Application of geomechanical classification to predict the convergence of coal mine galleries and to design their supports, Congress on Rock Mech., (E), 15-19.

2

Alemdag, S., Gurocak, Z., and Gokceoglu, C., 2015, A simple regression based approach to estimate deformation modulus of rock masses, Journal of African Earth Sciences, 110, 75-80.

10.1016/j.jafrearsci.2015.06.011
3

Aydan, Ö., Akagi, T., and Kawamoto, T., 1993, The squeezing potential of rocks around tunnels; theory and prediction, Rock Mechanics and Rock Engineering, 26(2), 137-163.

10.1007/BF01023620
4

Aydan, Ö., Ulusay, R., and Kawamoto, T., 1997, Assessment of rock mass strength for underground excavations.International Journal of Rock Mechanics and Mining Sciences, 34(3-4), 18-e1.

10.1016/S1365-1609(97)00273-6
5

Azizi, F., Koopialipoor, M., and Khoshrou, H., 2019, Estimation of rock mass squeezing potential in tunnel route (case study: Kerman water conveyance tunnel), Geotechnical and Geological Engineering, 37, 1671-1685.

10.1007/s10706-018-0714-5
6

Bellapu, H.V.S., Sinha, R.K., and Naik, S.R., 2023, Estimation of modulus of deformation using rock mass rating-a review and validation using 3D numerical modelling, Sustainability, 15(7), 5721.

10.3390/su15075721
7

Bieniawski, Z.T., 1984, Rock mechanics design in mining and tunneling. AA Balkema.

8

Boinee, P., Angelis, A.D., and Foresti, G.L., 2005, Meta random forests, International Journal of Computational Intelligence, 2(3), 138-147.

9

Boser, B.E., Guyon, I.M., and Vapnik, V.N., 1992, A training algorithm for optimal margin classifiers. InProceedings of the fifth annual workshop on Computational Learning Theory, pp. 144-152.

10.1145/130385.130401
10

Brandenburg, Minke, 2017, Text classification of Dutch police records, Utrecht University Artificial Intelligence, Unpublished Master's thesis.

11

Breiman, L., 2001, Random forests, Machine learning, 45, 5-32.

10.1023/A:1010933404324
12

Cameron-Clarke, I.S., and Budavari, S., 1981, Correlation of rock mass classification parameters obtained from bore core and insitu observations, Engineering Geology, 17, 19-53.

10.1016/0013-7952(81)90019-3
13

Chen, Y., Li, T., Zeng, P., Ma, J., Patelli, E., and Edwards, B., 2020, Dynamic and probabilistic multi-class prediction of tunnel squeezing intensity, Rock Mechanics and Rock Engineering, 53, 3521-3542.

10.1007/s00603-020-02138-8
14

Chun, B.S., Lee, Y.J., and Jung, S.H., 2006, The evaluation for estimation method of deformation modulus of rock mass using RMR system, Journal of the Korean GEO-Environmental Society, 7(2), 25-32.

15

Diederichs, M.S., and Kaiser, P.K., 1999, Stability of large excavations in laminated hard rock masses: the voussoir analogue revisited, International Journal of Rock Mechanics and Mining Sciences, 36(1), 97-117.

10.1016/S0148-9062(98)00180-6
16

Feng, X., and Jimenez, R., 2015, Predicting tunnel squeezing with incomplete data using Bayesian networks, Engineering Geology, 195, 214-224.

10.1016/j.enggeo.2015.06.017
17

Ghasemi, E., and Gholizadeh, H., 2019, Prediction of squeezing potential in tunneling projects using data mining-based techniques, Geotechnical and Geological Engineering, 37, 1523-1532.

10.1007/s10706-018-0705-6
18

Gokceoglu, C.A.N.D.A.N., Sonmez, H., and Kayabasi, A., 2003, Predicting the deformation moduli of rock masses.International Journal of Rock Mechanics and Mining Sciences, 40(5), 701-710.

10.1016/S1365-1609(03)00062-5
19

Guo, H., Wang, J., Ao, W., and He, Y., 2018, SGB‐ELM: an advanced stochastic gradient boosting‐based ensemble scheme for extreme learning machine, Computational Intelligence and Neuroscience, 2018(1), 4058403.

10.1155/2018/405840330046300PMC6038681
20

Hoek, E., and Marinos, P., 2000, Predicting tunnel squeezing problems in weak heterogeneous rock masses, Tunnels and Tunneling International, 32(11), 45-51.

21

Huang, Z., Liao, M., Zhang, H., Zhang, J., Ma, S., and Zhu, Q., 2022, Predicting tunnel squeezing using the SVM-BP combination mode, Geotechnical and Geological Engineering, 40(3), 1387-1405.

10.1007/s10706-021-01970-1
22

Jethwa, J.L., Singh, B., and Singh, B., 1984, Estimation of ultimate rock pressure for tunnel linings under squeezing rock conditions, InDesign and Performance of Underground Excavations: ISRM Symposium-Cambridge, 3-6 September 1984, pp. 231-238.

23

Jimenez, R., and Recio, D., 2011, A linear classifier for probabilistic prediction of squeezing conditions in Himalayan tunnels, Engineering Geology, 121(3-4), 101-109.

10.1016/j.enggeo.2011.05.006
24

Kayabasi, A., Gokceoglu, C.A.N.D.A.N., and Ercanoglu, M.U.R.A.T, 2003, Estimating the deformation modulus of rock masses: a comparative study, International Journal of Rock Mechanics and Mining Sciences, 40(1), 55-63.

10.1016/S1365-1609(02)00112-0
25

Laderian, A., and Abaspoor, M.A., 2012, The correlation between RMR and Q systems in parts of Iran, Tunnelling and Underground Space Technology, 27(1), 149-158.

10.1016/j.tust.2011.06.001
26

Lee, S., and Ahn, T.H., 2005, A Study on the Characteristics of Tunnel Based on the Rock Mass Classification, Journal of the Korean Ceotechnical Society, 21(3), 19-25.

27

Lundberg, S., 2017, A unified approach to interpreting model predictions, arXiv preprint arXiv:1705.07874.

28

Mahmoodi, A., Hashemi, L., Jasemi, M., Laliberté, J., Millar, R.C., and Noshadi, H., 2023, A novel approach for candlestick technical analysis using a combination of the support vector machine and particle swarm optimization, Asian Journal of Economics and Banking, 7(1), 2-24.

10.1108/AJEB-11-2021-0131
29

Mehrotra, V.K.,1992, Estimation of engineering parameters of rock mass, University of Roorkee.

30

Mohammadi, H., and Rahmannejad, R., 2010, The estimation of rock mass deformation modulus using regression and artificial neural networks analysis, Arabian Journal for Science and Engineering, 35(1), 205.

31

Moreno Tallon, E., 1980, Application de las classificaciones geomechnicas a los tuneles de parjares, II Cursode sostenimientos activosen galeriasy tunnels.

32

Proctor, R.V., White, T.L., and Terzaghi, K.., 1946, Rock tunneling with steel supports.

33

Read, S.A.L., Perrin, N.D., and Richards, L.R., 1999, Applicability of the Hoek-Brown failure criterion to New Zealand greywacke rocks, ISRM, ISRM-9CONGRESS.

34

Rutledge, J.C., and Perston, R.L., 1978, Experience with engineering classifications of rock. In: Proc, Int. Tunnelling Sym., A3.1-A3.7.

35

Shafiei, A., Parsaei, H., and Dusseault, M.B., 2012, Rock squeezing prediction by a support vector machine classifier, InARMA US Rock Mechanics/Geomechanics Symposium, 24(27), 2012-435.

6

Shen, J., Karakus, M., and Xu, C., 2012, A comparative study for empirical equations in estimating deformation modulus of rock masses, Tunnelling and Underground Space Technology, 32, 245-250.

10.1016/j.tust.2012.07.004
37

Singh, B., Jethwa, J.L., Dube, A.K., and Singh, B., 1992, Correlation between observed support pressure and rock mass quality, Tunnelling and Underground Space Technology, 7(1), 59-74.

10.1016/0886-7798(92)90114-W
38

Sun, Y., Feng, X., and Yang, L., 2018, Predicting tunnel squeezing using multiclass support vector machines.Advances in Civil Engineering, 2018(1), 4543984.

10.1155/2018/4543984
39

Wood, A.M.M., 1972, Tunnels for roads and motorways, Quarterly Journal of Engineering Geology and Hydrogeology, 5(1-2), 111-126.

10.1144/GSL.QJEG.1972.005.01.12
40

Zhou, J., Zhu, S., Qiu, Y., Armaghani, D.J., Zhou, A., and Yong, W., 2022, Predicting tunnel squeezing using support vector machine optimized by whale optimization algorithm, Acta Geotechnica, 17(4), 1343-1366.

10.1007/s11440-022-01450-7
Information
  • Publisher :Korean Society for Rock Mechanics and Rock Engineering
  • Publisher(Ko) :한국암반공학회
  • Journal Title :Tunnel and Underground Space
  • Journal Title(Ko) :터널과 지하공간
  • Volume : 34
  • No :6
  • Pages :735-749
  • Received Date : 2024-11-26
  • Revised Date : 2024-12-06
  • Accepted Date : 2024-12-09