All Issue

2021 Vol.31, Issue 5 Preview Page

Technical Note

31 October 2021. pp. 333-359
Abstract
References
1
Ando, K., Adachi, T., Fujiwara, A., Vomvoris, S., Marshall, P., Lanyon, B., Yamamoto, S., Shimmura, A., 2002, The in-situ gas migration test (GMT) at the Grimsel test site: resaturation phase of silo type repository, Clays In Natural And Engineered Barriers For Radioactive Waste Confinement, December 9-12, 2002, Reims, France.
2
Alonso, E. E., Gens, A., Josa, A, 1990, A constitutive model for partially saturated soils, Géotechnique, Vol. 40(3), pp. 405-430. 10.1680/geot.1990.40.3.405
3
Bond, A., Chittenden, N., Thatcher, K., 2018, RWM Coupled Processes Project: First Annual Report for DECOVALEX-2019, Quintessa Report to RWM. QRS-1612D-R1 v1.2. Quintessa Ltd., Henley-on-Thames, UK.
4
Cuss, R.J., Harrington, J.F., Giot, R., Auvray, C., 2014a, Experimental observations of mechanical dilation at the onset of gas flow in Callovo-Oxfordian claystone, In: Norris, S., Bruno, J., (eds) Clays in Natural and Engineered Barriers for Radioactive Waste Confinement, Geological Society, London, Special Publications, Vol. 400, pp. 507-519. 10.1144/SP400.26
5
Cuss, R.J., Harrington, J.F., Noy, D.J., 2012, Final Report of FORGE WP4.1.1: The stress path permeameter experiment conducted on Callovo-Oxfordian Claystone, British Geological Survey Commissioned Report, CR/12/140. 116pp. British Geological Survey, Keyworth, Nottingham, UK.
6
Cuss, R.J., Harrington, J.F., Noy, D.J., Graham, C.C., Sellin, P., 2014b, Evidence of localised gas propagation pathways in a field-scale bentonite engineered barrier system; results from three gas injection tests in the large scale gas injection test (Lasgit), Applied Clay Science, Vol. 102, pp. 81-92. 10.1016/j.clay.2014.10.014
7
Cuss, R.J., Harrington, J.F., Noy, D.J., Wikman, A., Sellin, P., 2011, Large scale gas injection test (Lasgit): Results from two gas injection tests, Physics and Chemistry of the Earth, Vol. 36, pp. 1729-1742. 10.1016/j.pce.2011.07.022
8
Dagher, E.E., Nguyen, T.S., Sedano, J.I., 2019, Development of a mathematical model for gas migration (two-phase flow) in natural and engineered barriers for radioactive waste disposal, Geological Society, London, Special Publications, Vol 482(1), pp. 115-148. 10.1144/SP482.14
9
Damians, I.P., Olivella, S., Gens, A., 2017, Modelling gas flow experiments in Mx80 bentonite, In 9th Workshop on CODE_BRIGHT, Barcelona.
10
Davies, J.P., Davies, D.K., 2001, Stress-dependent permeability: characterization and modeling, Spe Journal, Vol. 6(2), pp. 224-235. 10.2118/71750-PA
11
Donohew, A.T,, Horseman, S.T., Harrington, J.F., 2000, Gas entry into unconfined clay pastes at water contents between the liquid and plastic limits, pp. 369-394 in: Environmental Mineralogy-Microbial Interactions, Anthropogenic Influences, Contaminated Land and Waste Management (J.D. Cotter-Howells, L.S. Campbell, E. Valsami-Jones, M. Batchelder, editors), Mineralogical Society Special Publication, 9. Mineralogical Society of Great Britain and Ireland, London, UK. 10.1180/MSS.9.18
12
Fall, M., Nasir, O., Nguyen, T.S., 2014, A coupled hydro-mechanical model for simulation of gas migration in host sedimentary rocks for nuclear waste repositories, Engineering Geology, Vol. 176, pp. 24-44. 10.1016/j.enggeo.2014.04.003
13
Fredlund, D.G., Xing, A., Huang, S., 1994, Predicting the permeability function for unsaturated soils using the soil-water characteristic curve, Canadian Geotechnical Journal, Vol. 31(4), pp. 533-546. 10.1139/t94-062
14
Gallé, C., 1998, Migration des gaz et pression de rupture dans une argile compactée destinée à la barrière ouvragée d'un stockage profound, Bulletin de la Société Géologique de France, Vol. 169, pp. 675-680.
15
Gallé, C., 2000, Gas breakthrough pressure in compacted Fo-Ca clay and interfacial gas overpressure in waste disposal context, Applied Clay Science, Vol. 17, pp. 85-97. 10.1016/S0169-1317(00)00007-7
16
Gallé, C., Tanai, K., 1998, Evaluation of gas transport properties of backfill materials for waste disposal: H2 migration experiments in compacted Fo-Ca Clay, Clays and Clay Minerals, Vol. 46, pp. 498-508. 10.1346/CCMN.1998.0460503
17
Gens, A., 1995, Constitutive laws, In Modern issues in non-saturated soils, pp. 129-158, Springer, Vienna. 10.1007/978-3-7091-2692-9_2
18
Gerard, P., Harrington, J., Charlier, R., Collin, F., 2014, Modelling of localised gas preferential pathways in claystone, International Journal of Rock Mechanics and Mining Sciences, Vol. 67, pp. 104-114. 10.1016/j.ijrmms.2014.01.009
19
Graham, J., Halayko, K.G., Hume, H., Kirkham, T., Gray, M., Oscarson, D., 2002, A capilliarity-advective model for gas break-through in clays, Engineering Geology, Vol. 64, pp. 273-286. 10.1016/S0013-7952(01)00106-5
20
Graham, C.C., Harrington, J.F., 2014, Final Report of FORGE 3.2.1: Key Gas Migration Processes in Compact Bentonite, FORGE Report D3.33. British Geological Survey, Keyworth, Nottingham, UK.
21
Graham, C.C., Harrington, J.F., Cuss, R.J., Sellin, P., 2012, Gas migration experiments in bentonite: implications for numerical modelling, Mineralogical Magazine, Vol. 76(8), pp. 3279-3292. 10.1180/minmag.2012.076.8.41
22
Guo, G., Fall, M., 2018, Modelling of dilatancy-controlled gas flow in saturated bentonite with double porosity and double effective stress concepts, Engineering Geology, Vol. 243, pp. 253-271. 10.1016/j.enggeo.2018.07.002
23
Guo, G., Fall, M., 2021, Advances in modelling of hydro-mechanical processes in gas migration within saturated bentonite: A state-of-art review, Engineering Geology, 106123. 10.1016/j.enggeo.2021.106123
24
Hallett, P.D., Newson, T.A., 2005, Describing soil crack formation using elastic-plastic fracture mechanics, European Journal of Soil Science, Vol. 56(1), pp. 31-38. 10.1111/j.1365-2389.2004.00652.x
25
Harrington, J.F., 2016, Task A: Stage 1A: 1D flow through saturated bentonite under constant volume boundary conditions, British Geological Survey, Pers. comm. 05/10/2016.
26
Harrington, J.F., De Lavaissière, R., Noy, D.J., Cuss, R.J., Talandier, J., 2012, Gas flow in Callovo-Oxfordian claystone (COx): results from laboratory and field-scale measurements, Mineralogical Magazine, Vol. 76, pp. 3303-3318. 10.1180/minmag.2012.076.8.43
27
Harrington, J.F., Graham, C.C., Cuss, R.J., Norris, S., 2017, Gas network development in a precompacted bentonite experiment: Evidence of generation and evolution, Applied Clay Science, Vol. 147, pp. 80-89. 10.1016/j.clay.2017.07.005
28
Harrington, J.F., Horseman, S.T., 2003, Gas Migration in KBS-3 Buffer Bentonite: Sensitivity of Test Parameters to Experimental Boundary Conditions, SKB Technical Report No. TR-03-02. Svensk Kärnbränslehantering AB, Stockholm, Sweden.
29
Harrington, J.F., Horseman, S.T., 1999, Gas transport properties of clays and mudrocks, In: Aplin, A.C., Fleet, A.J., Macquaker, J.H., (eds) Muds and Mudstones: Physical and Fluid Flow Properties, Geological Society of London, London, Special Publications, Vol. 158, pp. 107-124.Harrington, J.F., Horseman, S.T., 2003, Gas Migration in KBS-3 Buffer Bentonite: Sensitivity of Test Parameters to Experimental Boundary Conditions, SKB Technical Report No. TR-03-02. Svensk Kärnbränslehantering AB, Stockholm, Sweden. 10.1144/GSL.SP.1999.158.01.09
30
Hoch, A.R., Cliffe, K.A., Swift, B.T., Rodwell, W.R., 2004, Modelling Gas Migrationin Compacted Bentonite: GAMBIT Club Phase 3, Final Report, POSIVA, Olkiluoto, Finland.
31
Horseman, S.T., Harrington, J.F., Sellin, P., 1996, Gas Migration in MX80 Buffer Bentonite, In: Symposium on the Scientific Basis for Nuclear Waste Management XX (Boston), Materials Research Society, 465, pp. 1003-1010. 10.1557/PROC-465-1003
32
Horseman, S.T., Harrington, J.F., Sellin, P., 1999, Gas migration in clay barriers, Engineering Geology, Vol. 54, pp. 139-149. 10.1016/S0013-7952(99)00069-1
33
Horseman, S.T., Harrington, J.F., Sellin, P., 2003, Water and gas movement in Mx80 bentonite buffer clay, MRS Online Proceedings Library (OPL), pp. 807. 10.1557/PROC-807-715
34
Horseman, S.T., Harrington, J.F., Sellin, P., 2004, Water and Gas Movement in Mx80 Bentonite Buffer Clay, In: Symposium on the Scientific Basis for Nuclear Waste Management XXVII (Kalmar), Materials Research Society, Vol. 807, pp. 715-720. 10.1557/PROC-807-715
35
Juanes, R., Spiteri, E.J., Orr Jr, F.M., Blunt, M.J., 2006, Impact of relative permeability hysteresis on geological CO2 storage, Water resources research, Vol. 42(12). 10.1029/2005WR004806
36
KACHANOV, L.M., 1958, Time of the rupture process under creep conditions, Izy Akad. Nank SSR Otd Tech Nauk, Vol. 8, pp. 26-31.
37
Kawai, T., 1978, New discrete models and their application to seismic response analysis of structures, Nuclear engineering and design, Vol. 48(1), pp. 207-229. 10.1016/0029-5493(78)90217-0
38
Killough, J.E., 1976, Reservoir simulation with history-dependent saturation functions, Society of Petroleum Engineers Journal, Vol. 16(1), pp. 37-48. 10.2118/5106-PA
39
Kim, K., Rutqvist, J., Harrington, J.F., Tamayo-Mas, E., Birkholzer, J.T., 2021, Discrete dilatant pathway modeling of gas migration through compacted bentonite clay, International Journal of Rock Mechanics and Mining Sciences, Vol. 137, pp. 104569. 10.1016/j.ijrmms.2020.104569
40
Land, C.S., 1968, Calculation of imbibition relative permeability for two-and three-phase flow from rock properties, Society of Petroleum Engineers Journal, Vol. 8(2), pp. 149-156. 10.2118/1942-PA
41
Lee, C., Choi, H.J., Kim, G.Y., 2020a, Numerical modeling of coupled thermo-hydro-mechanical behavior of mx80 bentonite pellets, Tunnel and Underground Space, Vol. 30(5), pp. 446-461.
42
Lee, C., Lee, J., Kim, G.Y., 2020b, Numerical analysis of FEBEX at Grimsel Test Site in Switzerland, Tunnel and Underground Space, Vol 30(4), pp. 359-381.
43
Lee, C., Lee, J., Kim, M., Kim, G.Y., 2020c, Implementation of Barcelona Basic Model into TOUGH2-MP/FLAC3D, Tunnel and Underground Space, Vol. 30(1), pp. 39-62.
44
Lee, C., Yoon, S., Lee, J., Kim, G.Y., 2019, Introduction of Barcelona Basic Model for Analysis of the Thermo-Elasto-Plastic Behavior of Unsaturated Soils, Tunnel and Underground Space, Vol. 29(1), pp. 38-51.
45
Lee, J., Kim, I., Ju, H., Choi, H., Cho, D., 2020d, Proposal of an Improved Concept Design for the Deep Geological Disposal System of Spent Nuclear Fuel in Korea, Journal of Nuclear Fuel Cycle and Waste Technology, Vol. 18(S), pp. 1-19. 10.7733/jnfcwt.2020.18.S.1
46
Lee, J., Lee, C., Kim, G.Y., 2020e, Numerical Modelling for the Dilation Flow of Gas in a Bentonite Buffer Material: DECOVALEX-2019 Task A, Tunnel and Underground Space, Vol. 30(3), pp. 382-393.
47
Lee, J., Lee, C., Kim, G.Y., 2020f, Numerical Modelling of One Dimensional Gas Injection Experiment using Mechanical Damage Model: DECOVALEX-2019 Task A Stage 1A, Tunnel and Underground Space, Vol. 29(4), pp. 262-279.
48
Marschall, P., Horseman, S.T., Gimmi, T., 2005, Characterisation of gas transport properties of the opalinus clay, a potential host rock formation for radioactive waste disposal, Oil and Gas Science and Technology - Rev. IFP, Vol. 60, pp. 121-139. 10.2516/ogst:2005008
49
Mazars, J., 1984, Application de la mécanique de l'endommagement au comportement non linéaire et à la rupture du béton de structure, THESE DE DOCTEUR ES SCIENCES PRESENTEE A L'UNIVERSITE PIERRE ET MARIE CURIE-PARIS 6.
50
Mazars, J., 1986, A description of micro-and macroscale damage of concrete structures, Engineering Fracture Mechanics, Vol. 25(5-6), pp. 729-737. 10.1016/0013-7944(86)90036-6
51
Mazars, J., Pijaudier-Cabot, G., 1989, Continuum damage theory-application to concrete, Journal of engineering mechanics, Vol. 115(2), pp. 345-365. 10.1061/(ASCE)0733-9399(1989)115:2(345)
52
Meschke, G., Grasberger, S., 2003, Numerical modeling of coupled hydromechanical degradation of cementitious materials, Journal of engineering mechanics, Vol. 129(4), pp. 383-392. 10.1061/(ASCE)0733-9399(2003)129:4(383)
53
Mualem, Y., 1976, A new model for predicting the hydraulic conductivity of unsaturated porous media, Water resources research, Vol. 12(3), pp. 513-522. 10.1029/WR012i003p00513
54
Mualem, Y., 1978, Hydraulic conductivity of unsaturated porous media: generalized macroscopic approach, Water Resources Research, Vol. 14(2), pp. 325-334. 10.1029/WR014i002p00325
55
Nash, P.J., Swift, B.T., Goodfield, M., Rodwell, W.R., 1998, Modelling gas migration in compacted bentonite, Posiva Report, pp. 98-08.
56
Nguyen, T.S., Le, A.D., 2015, Simultaneous gas and water flow in a damage-susceptible bedded argillaceous rock, Canadian Geotechnical Journal, Vol. 52(1), pp. 18-32. 10.1139/cgj-2013-0457
57
Olivella, S., Alonso, E.E., 2008, Gas flow through clay barriers, Géotechnique, Vol. 58(3), pp. 157-176. 10.1680/geot.2008.58.3.157
58
Pusch, R., Forsberg, T., 1983, Gas Migration through Bentonite Clay, SKB Technical Report 83-71, Svensk Kärnbränslehantering AB, Stockholm, Sweden.
59
Pusch, R., Ranhagen, L., Nilsson, K., 1985, Gas Migration through MX-80 Bentonite, Nagra Technical Report NTB 85-36, Nagra, Wettingen, Switzerland.
60
Rutqvist, J., Tsang, C.F. (2002). A study of caprock hydromechanical changes associated with CO 2-injection into a brine formation. Environmental Geology, 42(2-3), 296-305. 10.1007/s00254-001-0499-2
61
Rutqvist, J., Ijiri, Y., Yamamoto, H. (2011). Implementation of the Barcelona Basic Model into TOUGH-FLAC for simulations of the geomechanical behavior of unsaturated soils. Computers & Geosciences, 37(6), 751-762. 10.1016/j.cageo.2010.10.011
62
Rutqvist, J., Kim, K., Xu, H., Guglielmi, Y., Birkholzer, J. (2018). Investigation of Couple d Processes in Argillite Rock: FY18 Progress. Prepared for US Department of Energy. Spent Fuel and Waste Disposition. LBNL, 2001168. 10.2172/1462005PMC5904710
63
Sedighi, M., Thomas, H.R., Al Masum, S., Vardon, P.J., Nicholson, D., Chen, Q. (2015). Geochemical modelling of hydrogen gas migration in an unsaturated bentonite buffer. Geological Society, London, Special Publications, 415(1), 189-201. 10.1144/SP415.12
64
Sellin, P., Harrington, J.F., 2006, Large-Scale Gas Injection Test (Lasgit) Current Status, American Nuclear Society High Level Waste Meeting, Las Vegas.
65
Swift, B.T., Hoch, A.R., Rodwell, W.R., 2001, Modelling gas migration in compacted bentonite: GAMBIT Club Phase 2, Final report (No. POSIVA-01-02), Posiva Oy.
66
Tamayo-Mas, E., Harrington, J.F., Shao, H., Dagher, E., Lee, J., Kim, K., Rutqvist, J., Lai, S., Chittenden, N., Wang, Y., Damians, I., Olivella, S., 2018, Numerical Modelling of Gas Flow in a Compact Clay Barrier for DECOVALEX-2019, Paper presented at the 2nd International Discrete Fracture Network Engineering Conference, 20-21, June, Seattle, Washington, USA.
67
Tamayo-Mas, E., Harrington, J.F., 2020, DECOVALEX-2019 Project: Task A Final Report. 10.2172/1762801
68
Tamayo-Mas, E., Harrington, J.F., Brüning, T., Shao, H., Dagher, E.E., Lee, J., Rutqvist, J., Kolditz, O., Lai, S.H., Chittenden, N., Wang, Y., Damians, I.P., Olivella, S., 2021, Modelling advective gas flow in compact bentonite: Lessons learnt from different numerical approaches, International Journal of Rock Mechanics and Mining Sciences, Vol. 139, pp. 104580. 10.1016/j.ijrmms.2020.104580
69
Tanai, K., Kanno, T., Gallé, C., 1996, Experimental study of gas permeabilities and breakthrough pressures in clays, MRS Symposia Proceedings, 465, 1003-1010. 10.1557/PROC-465-995
70
Tang, C.A., Tham, L.G., Lee, P.K.K., Yang, T.H., Li, L.C., 2002, Coupled analysis of flow, stress and damage (FSD) in rock failure, International Journal of Rock Mechanics and Mining Sciences, Vol. 39(4), pp. 477-489. 10.1016/S1365-1609(02)00023-0
71
The Grimsel Test Site in Switzerland, accessed October 1, 2021. available from [grimsel.com/gts-projects/]
72
Van Genuchten, M.T., 1980, A closed‐form equation for predicting the hydraulic conductivity of unsaturated soils, Soil science society of America journal, Vol. 44(5), pp. 892-898. 10.2136/sssaj1980.03615995004400050002x
73
Volckaert, G., Ortiz, L., De Cannière, P., Put, M., Horseman, S.T., Harrington, J.F., Fioravante, V., Impey, M., 1995, MEGAS - Modelling and Experiments on Gas Migration in Repository Host Rocks: Final Report Phase 1, European Commission Report EUR 16235 EN.
74
Vomvoris, S., Lanyon, B., Marschall, P., Ando., K., Adachi, T., Fujiwara, A., Yamamoto, S., 2003, Sand/bentonite barriers and gas migration: the GMT large-scale in-situ test in the Grimsel Test Site, Materials Research Society Proceedings on Scientific Basis for Nuclear Waste Management XXVI, Vol. 757, Materials Research Society, Warrendale, Pennsylvania. 10.1557/PROC-757-II3.27
75
Xu, W. J., Shao, H., Hesser, J., Wang, W., Schuster, K., Kolditz, O., 2013, Coupled multiphase flow and elasto-plastic modelling of in-situ gas injection experiments in saturated claystone (Mont Terri Rock Laboratory), Engineering Geology, Vol. 157, pp. pp. 55-68. 10.1016/j.enggeo.2013.02.005
76
Ye, W. M., Xu, L., Chen, B., Chen, Y.G., Ye, B., Cui, Y.J., 2014, An approach based on two-phase flow phenomenon for modeling gas migration in saturated compacted bentonite, Engineering geology, Vol. 169, pp. 124-132. 10.1016/j.enggeo.2013.12.001
Information
  • Publisher :Korean Society for Rock Mechanics and Rock Engineering
  • Publisher(Ko) :한국암반공학회
  • Journal Title :Tunnel and Underground Space
  • Journal Title(Ko) :터널과 지하공간
  • Volume : 31
  • No :5
  • Pages :333-359
  • Received Date : 2021-09-10
  • Revised Date : 2021-09-27
  • Accepted Date : 2021-10-01