All Issue

2021 Vol.31, Issue 5

Technical Notes

October 2021. pp. 309-332
Abstract
References
1
Barton, N. and V. Choubey, 1977, The shear strength of rock joints in theory and practice. Rock Mechanics 10(1-2):1-54. 10.1007/BF01261801
2
Hökmark, H., M. Lönnqvist and B. Fäith, 2010, THM-issues in repository rock. SKB TR-10-23, Stockholm, Sweden: Svensk Kärnbränslehantering AB (SKB).
3
Ben, Y.X., Y. Wang and G. Shi, 2013, Development of a model for simulating hydraulic fracturing with DDA. In: Chen, G.Q., Y. Ohnishi, L. Zheng, T. Sasaki, editors, Frontiers of discontinuous numerical methods and practical simulations in engineering and disaster prevention. Boca Raton, FL: CRC Press. pp. 169-175. 10.1201/b15791-21
4
Choo, L.Q., Z. Zhao, H. Chen and Q. Tian, 2016, Hydraulic fracturing modeling using the discontinuous deforamtion analysis (DDA) method. Computers and Geotechnics 76:12-22. 10.1016/j.compgeo.2016.02.011
5
Cundall, P., 2000, Fluid formulation for PFC2D. Minneapolis, Minnesota: Itasca Consulting Group Inc.
6
Hazzard, J.F., R.P. Young and S.J. Oates, 2002, Numerical modeling of seismicity induced by fluid injection in a fractured reservoir. In: Proceedings of the 5th North American Rock Mechanics Symposium, Mining and Tunnel Innovation and Opportunity, Toronto, Canada, 7-10 July 2002, pp. 1023-1030.
7
Itasca Consulting Group, 2018, UDEC 7.0 User's Guide. Minneapolis, Minnesota: Itasca Consulting Group Inc.
8
Itasca Consulting Group, 2019, 3DEC 7.0 User's Guide. Minneapolis, Minnesota: Itasca Consulting Group Inc.
9
Itasca Consulting Group, 2021, PFC 7.0 User's Guide. Minneapolis, Minnesota: Itasca Consulting Group Inc.
10
Jaeger, J.C., N.G.W. Cook and R.W. Zimmerman, 2007, Fundamentals of Rock Mechanics, Fourth edition, Malden, MA: Blackwell Publishing.
11
Janiszewski, M., B. Shen and M. Rinne, 2019, Simulation of the interactions between hydrualic and natural fractures using a fracgture mechanics approach. Journal of Rock Mechanics and Geotechnical Enineering 11:1138-1150. 10.1016/j.jrmge.2019.07.004
12
Jiao, Y.-Y., X.-L. Zhang and J. Zhao, 2012, Two-dimensional DDA contact constitutive model for simulating rock fragmentation. Journal of Engineering Mechanics 138(2):199-209. 10.1061/(ASCE)EM.1943-7889.0000319
13
Jiao, Y.-Y., H.-Q. Zhang, X.-L. Zhang, H.-B. Li and A.-H. Jiang, 2015, A two-dimensional coupled hydromechanical discontinuum model for simulating rock hydraulic fracturing. International Journal for Numerical and Analytic Methods in Geomechanics 39:457-481. 10.1002/nag.2314
14
Jing, L., Y. Ma and Z. Fang, 2001, Modeling of fluid flow and solid deformation for fractured rocks with discontinuous deformation analysis (DDA) method, International Rock Mechanics and Mining Sciences 38:343-355. 10.1016/S1365-1609(01)00005-3
15
Jing, L., 2003, A review of techniques, advances and outstanding issues in numerical modelling for rock mechanics and rock engineering. International Journal of Rock Mechanics and Mining Sciences 40(3):283-353. 10.1016/S1365-1609(03)00013-3
16
Khristianovich, S.A. and Y.P. Zheltov, 1955, Formation of vertical fractures by means of highly viscous liquid. In: Proceedings fourth world petroleum conference. Rome, June 6-15, 1955. pp. 579-586.
17
Kim, H.-M., E.-S. Park, B. Shen, J.-H. Synn, T.-K. Kim, S.-C. Lee, T.-Y. Ko, H.-S. Lee and J.-M. Lee, 2011, Development of thermal-hydraulic-mechanical coupled numerical analysis code for complex behavior in jointed rock mass based on fracture mechanics, Tunnel & Underground Space 21(1):66-81.
18
Kim, H.-M. and S. Kwon, 2017, Deep Geological Disposal of High-Level Radioactive Wastes and Coupled Thermal-Hydraulic-Mechanical-Chemical Analysis, Journal of the Korean Socienty of Mineral and Energy Resources Engineerings 54(4):319-327. 10.12972/ksmer.2017.54.4.319
19
Lee, J., K.-I. Kim, K.-B. Min and J. Rutqvist, 2019, TOUGH-UDEC: A simulator for coupled multiphase fluid flows, heat transfers and discontinous deformations in fractured porous media. Computers and Geosciences 126:120-130. 10.1016/j.cageo.2019.02.004
20
Lei, Q., J.-P. Latham and C.-F. Tsang, 2017, The use of discrete fracture networks for modelling coupled geomechanical and hydrological behaviour of fractured rocks. Computers and Geotechnics 85:151-176. 10.1016/j.compgeo.2016.12.024
21
Lisjak, A. and G. Grasselli, 2014, A reivew of discrete modeling techniques for fracturing processes in discontinuous rock masses. Journal of Rock Mechanics and Geotechnical Engineering 6:301-314. 10.1016/j.jrmge.2013.12.007
22
Mas Ivars, D., 2006, Water inflow into excavations in fractured rock - a three-dimensional hydro-mechanical numerical study. International Journal of Rock Mechanics and Mining Sciences 43:705-725. 10.1016/j.ijrmms.2005.11.009
23
Min, K.-B., J. Rutqvist, C.-F. Tsang and L. Jing, 2004, Stress-dependent permeability of fractured rock masses: an numerical study. International Journal of Rock Mechanics and Mining Sciences 41:1191-1210. 10.1016/j.ijrmms.2004.05.005
24
Min, K.-B. and O. Stephansson, 2011, The DFN-DEM approach applied to investigate the effects of stress on mechanical and hydraulic rock mass properties at Forsmark, Sweden. Tunnel & Underground Space 21(2):117-127.
25
Morgan, W.E. and M.M. Aral, 2015, An implicitly coupled hydro-geomecahnical model for hydraulic fracture simulation with the discontinuous deformation analysis. International Journal of Rock Mechanics and Mining Sciences 73:82-94. 10.1016/j.ijrmms.2014.09.021
26
Olivella, S., A. Gens, J. Carrera and E.E. Alonso, 1996, Numerical formulation for a simulator (CODE_BRIGHT) for the coupled analysis of saline media. Engineering with Computers 13(7):87-112. 10.1108/02644409610151575
27
Olsson, R. and N. Barton, 2001, An improved model for hydromechanical coupling during shearing of rock joints. International Journal of Rock Mechanics and Mining Sciences 38:317-329. 10.1016/S1365-1609(00)00079-4
28
Park, B. and K.-B. Min, 2015, Bonded-particle discree element modelling of mechanical behavior of transversely isotropic rock. International Journal of Rock Mechanics and Mining Sciences 76:243-255. 10.1016/j.ijrmms.2015.03.014
29
Park, J.-W., C.-H. Park and C. Lee, 2021, Hydro-mechanical modeling of fracture opening and slip using grain-based distinct element model: DECOVALEX-2023 Task G (Benchmark Simulation), Tunnel & Underground Space 31(4):270-288.
30
Parker, A.P., 1981, The mechanics of fracture and fatigue: An introduction. London and New York: E. & F. N. Spon, Ltd.
31
Potyondy, D.O. and P.A. Cundall, 2004, A bonded-particle model for rock. International Journal of Rock Mechanics and Mining Sciences 41:1329-1364. 10.1016/j.ijrmms.2004.09.011
32
Pruess, K., C. Oldenburg and G. Moridis, 2012, TOUGH2 users's guide, version 2.1. LBNL-43134, Berkeley, CA: Lawrence Berkeley National Laboratory.
33
Rutqvist, J. and C.-F. Tsang, 2002, A study of caprock hydromechanical changes associated with CO2-injection into a brine formation. Enviromental Geology 42:296-305. 10.1007/s00254-001-0499-2
34
Shen, B. and O. Stephansson, 1994, Modification of the G-criterion for crack propagation subjected to compression. Engineering Fracture Mechanics 47(2):177-189. 10.1016/0013-7944(94)90219-4
35
Shen, B., 2002, Two Dimensional Fracture Propagation Code (Version 1.1) User's Manual. Kyrkslätt, Finland: Fracom Ltd.
36
Shi, G.-H. and R.E. Goodman, 1985, Two dimensional discontinuous deformation analysis. International Journal for Numerical and Analytical Methods in Geomechanics 9:541-556. 10.1002/nag.1610090604
37
Shen, B., 2010, Development of Hydro-Mechanical Coupling Function in FRACOD. CSIRO Earth Science and Resource Engineering Report EP106301, Kenmore, Australia: CSIRO.
38
Shi, G., 2001, Three dimensional discontinuous deformation analysis, In: Elsworth, D., J.P. Tinucci, K.A. Heasley, editors, Rock mechanics in the national interest. Amsterdam, The Netherlands: Swets & Zeitlinger Lisse. pp. 1421-1428.
39
Shi, J., B. Shen, O. Stephansson and M. Rinne, 2014, A three-dimensional crack growth simulator with displacement discontinuity method. Engineering Analysis with Boundary Elements 48:73-86. 10.1016/j.enganabound.2014.07.002
40
Sneddon, I.F. and M. Lowengrub, 1969, Crack problems in the classical theory of elasticity. New York: Wiley.
41
Tomac, I. and M. Gutierrez, 2017, Coupled hydro-thermo-mechanical modeling of hydraulic fracturing in quasi-brittle rocks using BPM-DEM. Journal of Rock Mechanics and Geotechincal Engineering 9:92-104. 10.1016/j.jrmge.2016.10.001
42
USNRC, 2011, Coupled processes workshop report. NRC-02-07-006, Rockville, ML: U.S. Nuclear Regulatory Commission, 76p.
43
Watanabe, N., W. Wang, C.I. McDermott, T. Taniguchi and O. Kolditz, 2010, Uncertainty analysis of thermo-hydro-mechanical coupled processes in heterogeneous porous media. Computer Mechanics 45:263-280. 10.1007/s00466-009-0445-9
44
Wijesinghe, A.M., 1986, An exact similarity solution for coupled deformation and fluid flow in discrete fractures. Technical Report UCID-20675, Livermore, CA: Lawrence Livermore National Laboratory.
45
Xie, L., K.-B. Min and B. Shen, 2016, Simulation of hydraulic fracturing and its interactions with a pre-existing fracture using displacement discontinuity method. Journal of Natural Gas Science and Engineering 36:1284-1294. 10.1016/j.jngse.2016.03.050
46
Yin, Z., H. Huang, L. Zhang and S. Maxwell, 2020, Three-dimensional distinct element modeling of fault reactivation and induced seismicity due to hydraulic fracturing injection and backflow. Journal of Rock Mechanics and Geotechnical Engineering 12:752-767. 10.1016/j.jrmge.2019.12.009
47
Yoon , J.S., A. Zang and O. Stephansson, 2014, Numerical investigation on optimized stimulation of intact and naturally fractured deep geothermal reservoirs using hydro-mechanical coupled discrete particles joints model. Geothermics 52:165-184. 10.1016/j.geothermics.2014.01.009
48
Yoon, J.S., G. Zimmernamnn, A. Zang and O. Stephansson, 2015, Discrete element modeling of fluid injection-induced seismicity and activation of nearby fault. Canadian Geotechnical Journal 52:1457-1465. 10.1139/cgj-2014-0435
49
Yoon, J.S., A. Zang, O. Stephansson, H. Hofmann and G. Zimmermann, 2017, Discrete Element Modelling of Hydarulic Fracture Propagation and Dynamic Interaction with Natural Fractures in Hard Rock. Procedia Engineering 191:1023-1031. 10.1016/j.proeng.2017.05.275
50
Yoon, J.S. and J. Zhou, 2020, Modelling of fault deformation induced by fluid injection using hydro-mechanical coupled 3D particle flow code: DECOVALEX-2019 Task B. Tunnel & Underground Space 30(4):320-334.
51
Yow, J.L. and J.R. Hunt, 2002, Coupled processes in rock mass performance with emphasis on nuclear waste isolation. International Journal of Rock Mechanics and Mining Sciences 39:143-150. 10.1016/S1365-1609(02)00064-3
52
Zareidarmiyan, A., H. Salarirad, V. Vilarrasa, K.-I. Kim, J. Lee and K.-B. Min, 2020, Comparison of numerical codes for coupled thermo-hydro-mechanical simulations of fractured media. Journal of Rock Mechanics and Geotechnical Engineering 12:850-865. 10.1016/j.jrmge.2019.12.016
53
Zhang, X., D.J. Sanderson, R.M. Harkness and N.C. Last, 1996, Evaluation of the 2-D Permeability Tensor for Fractured Rock Mass, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstract 33(1):17-37. 10.1016/0148-9062(95)00042-9
54
Zhang, F., Z. Yin, Z. Chen, S. Maxwell, L. Zhang and Y. Wu, 2020, Fault reactivation and induced seismicity during multi-stage hydraulic fracturing: microseismic analysis and geomechanical modelling. Society of Petroleum Engineers Journal 25(2):692-711. 10.2118/199883-PA
55
Zimmerman, R.W. and G.S. Bodvarsson, 1996, Hydraulic conductivity of rock fractures. Transport in Porous Media 23(1):1-30. 10.1007/BF00145263
Information
  • Publisher :Korean Society for Rock Mechanics and Rock Engineering
  • Publisher(Ko) :한국암반공학회
  • Journal Title :Tunnel and Underground Space
  • Journal Title(Ko) :터널과 지하공간
  • Volume : 31
  • No :5
  • Pages :309-332
  • Received Date :2021. 09. 03
  • Revised Date :2021. 09. 27
  • Accepted Date : 2021. 10. 08