All Issue

2024 Vol.34, Issue 6 Preview Page

Original Article

31 December 2024. pp. 709-721
Abstract
References
1

Armaghani, D.J., Mohamad, E.T., Narayanasamy, M.S., Narita, N., and Yagiz, S., 2017, Development of hybrid intelligent models for predicting TBM penetration rate in hardrock condition, Tunnelling and Underground Space Technology, 63, 29-43.

10.1016/j.tust.2016.12.009
2

Ayawah, P.E., Sebbeh-Newton, S., Azure, J.W., Kaba, A. G., Anani, A., Bansah, S., and Zabidi, H., 2022, A review and case study of Artificial intelligence and Machine learning methods used for ground condition prediction ahead of tunnel boring Machines, Tunnelling and Underground Space Technology, 125, 104497.

10.1016/j.tust.2022.104497
3

Breiman, L., 1996, Bagging predictors, Machine Learning, 24, 123-140.

10.1007/BF00058655
4

Breiman, L., Friedman, J, Stone, C.J, and Olshen, R.A., 1984, Classification and Regression Trees, CRC press.

5

Chen, R., Zhang, P., Wu, H., Wang, Z., and Zhong, Z., 2019, Prediction of shield tunneling-induced ground settlement using machine learning techniques, Frontiers of Structural and Civil Engineering, 13(6), 1363-1378.

10.1007/s11709-019-0561-3
6

Friedman, J.H., 2001, Greedy function approximation: a gradient boosting machine, Annals of statistics, 1189-1232.

10.1214/aos/1013203451
7

Kang, T.H., Choi, S.W., Lee, C., and Chang, S.H., 2020, A Study on Prediction of EPB shield TBM Advance Rate using Machine Learning Technique and TBM Construction Information, Tunnel and Underground Space, 30(6), 540-550.

8

Kang, T.H., Choi, S.W., Lee, C., and Chang, S.H., 2021, A Study on the Prediction of Rock Classification Using Shield TBM Data and Machine Learning Classification Algorithms, Tunnel and Underground Space, 31(6), 494-507.

9

Kang, T.H., Choi, S.W., Lee, C., and Chang, S.H., 2022a, A study on the prediction of disc cutter wear using TBM data and machine learning algorithm, Tunnel and Underground Space, 32(6), 502-517.

10

Kang, T.H., Choi, S.W., Lee, C., and Chang, S.H., 2022b, Soil Classification by Machine Learning Using a Tunnel Boring Machine's Operating Parameters, Applied Sciences, 12(22), 11480.

10.3390/app122211480
11

Kang, T.H., Choi, S.W., Lee, C., and Chang, S.H., 2023, A Study on the Prediction of Uniaxial Compressive Strength Classification Using Slurry TBM Data and Random Forest, Tunnel and Underground Space, 33(6), 547-560.

12

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., and Liu, T.Y., 2017, Lightgbm: a highly efficient gradient boosting decision tree, Advances in neural information processing systems, 30, 3149-3157.

13

Kearns, M., and Valiant, L.G., 1994, Cryptographic limitations on learning Boolean formulae and finite automata, Journal of the Association for Computing Machinery, 41(1), 67-95.

10.1145/174644.174647
14

Kim, D., Pham, K., Oh, J.Y., Lee, S.J., and Choi, H., 2022, Classification of surface settlement levels induced by TBM driving in urban areas using random forest with data-driven feature selection, Automation in Construction, 135, 104109.

10.1016/j.autcon.2021.104109
15

Kim, Y., Hong, J., and Kim, B., 2020, Performance comparison of machine learning classification methods for decision of disc cutter replacement of shield TBM, Journal of Korean Tunnelling and Underground Space Association, 22(5), 575-589.

16

La, Y.S., Kim, M.I., and Kim, B., 2019, Prediction of replacement period of shield TBM disc cutter using SVM, Journal of Korean Tunnelling and Underground Space Association, 21(5), 641-656.

17

McClellan, A., 2020, Big data, Writ large: Technology to advance tunnel boring, TBM: Tunnel Business Magazine, April 2020, 24-27.

18

Mokhtari, S., and Mooney, M.A., 2020, Predicting EPBM advance rate performance using support vector regression modeling, Tunnelling and Underground Space Technology, 104, 103520.

10.1016/j.tust.2020.103520
19

Park, B., Choi, S.W., Lee, C., Kang, T.H., Do, S., Lee, W.Y., and Chang, S.H., 2021, An Operating Model for an EPB Shield TBM Simulator by the Correlation Analysis of Operational Actions and Mechanical Responses, Applied Sciences, 11(23), 11443.

10.3390/app112311443
20

Vapnik, V., 1995, The Nature of Statistical Learning Theory, Springer, New York.

10.1007/978-1-4757-2440-08555380
21

Yang, H., Song, K., and Zhou, J., 2022, Automated recognition model of geomechanical information based on operational data of tunneling boring machines, Rock Mechanics and Rock Engineering, 55, 1499-1516.

10.1007/s00603-021-02723-5
Information
  • Publisher :Korean Society for Rock Mechanics and Rock Engineering
  • Publisher(Ko) :한국암반공학회
  • Journal Title :Tunnel and Underground Space
  • Journal Title(Ko) :터널과 지하공간
  • Volume : 34
  • No :6
  • Pages :709-721
  • Received Date : 2024-11-19
  • Revised Date : 2024-11-25
  • Accepted Date : 2024-11-25