All Issue

2022 Vol.32, Issue 5

Technical Note

31 October 2022. pp. 285-297
Abstract
References
1
Aadnoy, B.S. and Larsen, K., 1989, Method for Fracture-Gradient Prediction for Vertical and Inclined Boreholes, SPE Drill. Eng., 4, 99-103. 10.2118/16695-PA
2
Addis, M.A., Hanssen, T.H., Yassir, N., Willoughby, D.R., and Enever, J., 1998, Comparison of leak-off test and extended leak-off test data for stress estimation, Proc. SPE/ISRM Rock Mech. in Petrol. Eng. Conf., 1, 131-140. 10.2118/47235-MS
3
Bae, S., Kim, H., Kim, J., Park, E. S., Jo, Y., Ji, T., and Won, K., 2021, Hydraulic Characteristics of Deep and Low Permeable Rock Masses in Gyeongju Area by High Precision Constant Pressure Injection Test, Tunnel and Underground Space, 31(4), 243-269.
4
Blanton, T.L., 1982, An experimental study of interaction between hydraulically induced and pre-existing fractures, In SPE unconventional gas recovery symposium, SPE-10847-MS, 10.2118/10847-MS
5
Chang, C., Jo, Y., Quach, N., Shinn, Y. J., Song, I., and Kwon, Y. K., 2016, Geomechanical characterization for the CO2 injection test site, offshore Pohang Basin, SE Korea, Proceedings of 50th US Rock Mechanics/Geomechanics Symposium, 1064-1069.
6
Cheng, W., Yan, J., Mian, C., Tong, X.U., Zhang, Y., and Ce, D., 2014, A criterion for identifying hydraulic fractures crossing natural fractures in 3D space, Pet. Explor. Dev., 41(3), 371-376. 10.1016/S1876-3804(14)60042-2
7
Choi, S.-J., Park, K.G., Park, C., and Lee, C., 2021, Protection and Installation of FBG Strain Sensor in Deep Boreholes for Subsurface Faults Behavior Monitoring, Sensors, 21, 5170. 10.3390/s2115517034372406PMC8348588
8
Cooper, H.H. and Jacob, C.E., 1946, A generalized graphical method for evaluating formation constants and summarizing well-field history, Trans., Am. Geophys. Union, 27(4), 526. 10.1029/TR027i004p00526
9
Janiszewski, M., Shen, B., and Rinne, M., 2019, Simulation of the interactions between hydraulic and natural fractures using a fracture mechanics approach, J. Rock Mech. Geotech. Eng., 11(6), 1138-1150. 10.1016/j.jrmge.2019.07.004
10
KIGAM, 2021, Development of integrated geophysical monitoring system at depth for assessing earthquake and fault activities at south-eastern Korea, KR-2021-Basic-005-2021, KIGAM, Daejeon, South Korea
11
Kim, S.-K., Chang, C., Shinn, Y.J., and Kwon, Y.K., 2018, Characteristics of Pohang CO2 Geological Sequestration Test Site, J. Eng. Geol., 28(2), 175-182.
12
Kunze, K.R. and Steiger, R.P., 1991, Extended Leakoff Tests to Measure In Situ Stress During Drilling, 32nd US Symp. Rock Mech., Norman, Oklahoma, ARMA-91-035.
13
Lavrov, A., Larsen, I., and Bauer, A., 2016, Numerical modelling of extended leak-off test with a pre-existing fracture, Rock Mech Rock Eng, 49(4), 1359-1368. 10.1007/s00603-015-0807-x
14
Lin, W., Yamamoto, K., Ito, H., Masago, H., and Kawamura, Y., 2008, Estimation of Minimum Principal Stress from an Extended Leak-off Test Onboard the Chikyu Drilling Vessel and Suggestions for Future Test Procedures. Scientific Drilling, 6, 43-47. 10.5194/sd-6-43-2008
15
Postler, D.P., 1997, Pressure Integrity Test Interpretation, SPE/IADC Drill. Conf., SPE-37589-MS. 10.2118/37589-MS
16
Quach, N.Q., Jo, Y., and Chang, C., 2018, Rock Permeability Estimation from Hydraulic Injection Tests in a Sealed Borehole Interval. J. Eng. Geol., 28(1), 1-9.
17
Raaen, A.M., Horsrud, P., Kjørholt, H., and Økland, D., 2006, Improved routine estimation of the minimum horizontal stress component from extended leak-off tests, Int. J. Rock Mech. Min. Sci., 43(1), 37-48. 10.1016/j.ijrmms.2005.04.005
18
Renard, P., 2017, Hytool: an open source matlab toolbox for the interpretation of hydraulic tests using analytical solutions, The Journal of Open Source Software, 2(19), 441. 10.21105/joss.00441
19
Sarmadivaleh, M., Rasouli, V, 2014, Modified Reinshaw and Pollard criteria for a non-orthogonal cohesive natural interface intersected by an induced fracture, Rock Mech. Rock Eng., 47(6), 2107-2115. 10.1007/s00603-013-0509-1
20
Theis, C.V., 1935, The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using groundwater storage, Trans., Am. Geophys. Union, 16(2), 519-524. 10.1029/TR016i002p00519
21
White, A. J., Traugott, M. O., and Swarbrick, R. E., 2002, The use of leak-off tests as means of predicting minimum in-situ stress, Petroleum Geoscience, 8(2), 189-193. 10.1144/petgeo.8.2.189
22
Zang, A., Zimmermann, G., Hofmann, H., Niemz, P., Kim, K.Y., Diaz, M., Zhuang, L., Yoon, J.S., 2021, Relaxation damage control via fatigue-hydraulic fracturing in granitic rock as inferred from laboratory-, mine-, and field-scale experiments, Scientific reports, 11(1), 1-16. 10.1038/s41598-021-86094-533762643PMC7991663
23
Zhang, J. and Yin, S.X., 2017, Fracture gradient prediction: an overview and an improved method, Petroleum Science, 14(4), 720-730. 10.1007/s12182-017-0182-1
24
Zhang, L., Zhou, J., Braun, A., and Han, Z, 2018, Sensitivity analysis on the interaction between hydraulic and natural fractures based on an explicitly coupled hydro-geomechanical model in PFC2, J. Pet. Sci. Eng., 167, 638-653. 10.1016/j.petrol.2018.04.046
Information
  • Publisher :Korean Society for Rock Mechanics and Rock Engineering
  • Publisher(Ko) :한국암반공학회
  • Journal Title :Tunnel and Underground Space
  • Journal Title(Ko) :터널과 지하공간
  • Volume : 32
  • No :5
  • Pages :285-297
  • Received Date : 2022-09-26
  • Revised Date : 2022-10-14
  • Accepted Date : 2022-10-17