All Issue

2022 Vol.32, Issue 6 Preview Page

Original Article

31 December 2022. pp. 586-597
Alpaydin, E., 2020, Introduction to machine learning. MIT press. 10.7551/mitpress/13811.001.0001
Breiman, L., 2001, Random forests. Machine Learning. 45, 5-32. 10.1023/A:1010933404324
Calcagno, P., Chilès, J. P., Courrioux, G., and Guillen, A., 2008. Geological modelling from field data and geological knowledge: Part I. Modelling method coupling 3D potential-field interpolation and geological rules. Physics of the Earth and Planetary Interiors, 171(1-4), 147-157. 10.1016/j.pepi.2008.06.013
Chung, S.G., Jang, W.Y., Ninjgarav, E., and Ryu, C.K., 2006, Compissibility Characteristics Associated with Depositional Environment of Pusan Clay in the Nakdong River Estuary. Journal of the Korean Geotechnical Society, 22(12), 57-65.
Cortes, C., and Vapnik, V., 1995, Support-vector networks. Machine learning, 20(3), 273-297. 10.1007/BF00994018
Cui, T., Pagendam, D.E., and Gilfedder, M., 2021, Gaussian process machine learning and Kriging for groundwater salinity interpolation. Environmental Modelling & Software, 144, 105170. 10.1016/j.envsoft.2021.105170
Erickson, C.B., Ankenman, B.E., and Sanchez, S.M., 2018, Comparison of Gaussian process modeling software. European Journal of Operational Research, 266(1), 179-192. 10.1016/j.ejor.2017.10.002
Goovaerts, P., 1997, Geostatistics for Natural Resources Evaluation. Oxford University Press.
Hengl, T., Nussbaum, M., Wright, M.N., Heuvelink, G.B.M., and Graler, B., 2018, Random forest as a generic framework for predictive modeling of spatial and spatio-temporal variables. PeerJ, 6. 10.7717/peerj.551830186691PMC6119462
Ho, T.K., 1998, The random subspace method for constructing decision forests. IEEE TPAMI, 20, 832-844. 10.1109/34.709601
Isaaks, E.H. and Srivastava, R.M., 1989, An Introduction to Applied Geostatistics. Oxford University Press.
Journel, A.G. and Kyriakidis, P.C., 2004, Evaluation of mineral reserves: a simulation approach. Oxford University Press.
Kim, H.R., Yu, S.H., Yun, S.T., Kim, K.H., Lee, G.T., Lee, J.H., Heo, C.H., and Ryu, D.W., 2022, Estimation of Spatial Distribution Using the Gaussian Mixture Model with Multivariate Geoscience Data. Economic and Environmental Geology, 55(4), 353-366. 10.9719/EEG.2022.55.4.353
Malkomes, G., Schaff, C., and Garnett, R., 2016, Bayesian optimization for automated model selection. Advances in Neural Information Processing Systems, 29.
MATLAB. 2022. Natick, Massachusetts: The MathWorks Inc.
MOLIT (Ministry of Land, Infrastructure and Transport), 2015, Guidance manual on subsidence control, 67p.
Müller, S., Schüler, L., Zech, A., and Heße, F., 2022, GSTools v1.3: a toolbox for geostatistical modelling in Python. Geoscientific Model Development, 15, 3161-3182. 10.5194/gmd-15-3161-2022
Smirnoff, A., Boisvert, E., and Paradis, S. J., 2008, Support vector machine for 3D modelling from sparse geological information of various origins. Computers and Geosciences, 34(2), 127-143. 10.1016/j.cageo.2006.12.008
Suh, J.W., Ryu, D.W., and Yum, B.W., 2020, Logistic Regression and GIS based Urban Ground Sink Susceptibility Assessment Considering Soil Particle Loss. Tunnel and Underground Space, 30(2), 149-163.
Wellmann, F. and Caumon, G., 2018, 3-D Structural geological models: Concepts, methods, and uncertainties. Advances in Geophysics, 59, 1-121. 10.1016/bs.agph.2018.09.001
Williams, C.K. and Rasmussen, C.E., 2006, Gaussian processes for machine learning. MIT press. 10.7551/mitpress/3206.001.0001
Yang, J.H. and Cho, K.R. 2011., Geomorphological Development of Embayment Area at the estuary of Nakdong River. Journal of The Korean Association of Regional Geographers, 17(6), 649-665.
Zhou, F., Li, M., Huang, C., Liang, H., Liu, Y., Zhang, J., Wang, B., and Hao, M., 2022, Lithology-Based 3D Modeling of Urban Geological Attributes and Their Engineering Application: A Case Study of Guang'an City, SW China. Frontiers Earth Science, 10, 918285. 10.3389/feart.2022.918285
  • Publisher :Korean Society for Rock Mechanics and Rock Engineering
  • Publisher(Ko) :한국암반공학회
  • Journal Title :Tunnel and Underground Space
  • Journal Title(Ko) :터널과 지하공간
  • Volume : 32
  • No :6
  • Pages :586-597
  • Received Date : 2022-12-19
  • Revised Date : 2022-12-26
  • Accepted Date : 2022-12-26