All Issue

2022 Vol.32, Issue 6 Preview Page

Research Article

31 December 2022. pp. 568-585
Abstract
References
1
Bergman, T.L., Lavine, A.S., Incropera, F.P., and DeWitt, D.P., 2011, Fundamentals of Heat and Mass Transfer, 7th edition. Wiley, New York.
2
Fu, T. F., Xu, T., Heap, M. J., Meredith, P. G., and Mitchell, T. M., 2020, Mesoscopic time-dependent behavior of rocks based on three-dimensional discrete element grain-based model. Computers and Geotechnics, 121, 103472. 10.1016/j.compgeo.2020.103472
3
Ghazvinian, E., Diederichs, M. S., and Quey, R., 2014, 3D random Voronoi grain-based models for simulation of brittle rock damage and fabric-guided micro-fracturing. Journal of Rock Mechanics and Geotechnical Engineering, 6(6), 506-521. 10.1016/j.jrmge.2014.09.001
4
IAEA, 2011, Geological disposal facilities for radioactive waste. Specific safety guide No. SSG-14, IAEA, Vienna, Austria.
5
Institute for Korea Spent Nuclear Fuel, 2022, https://iksnf.or.kr/ accessed on 1 December 2022.
6
Itasca Consulting Group Inc., 2022. 3DEC (3 Dimensional Distinct Element Code) online manual. https://www.itascacg.com/software/3DEC accessed on 1 December 2022.
7
Jaeger, J.C., Cook, N.G.W., and Zimmerman, R.W., 2007, Fundamentals in Rock Mechanics. fourth ed. Oxford: Blackwell publishing.
8
Kim, T., Lee, C., Kim, J. W., Kang, S., Kwon, S., Kim, K. I., Park, J.W., Park, C.H., and Kim, J. S., 2021, Introduction to Tasks in the International Cooperation Project, DECOVALEX-2023 for the Simulation of Coupled Thermohydro-mechanical- chemical Behavior in a Deep Geological Disposal of High-level Radioactive Waste. Tunnel and Underground Space, 31(3), 167-183.
9
Lan, H.X., Martin, C.D., and Hu, B., 2010, Effect of heterogeneity of brittle rock on micromechanical extensile behavior during compression loading. Journal of Geophysical Research: Solid Earth 115, B1. 10.1029/2009JB006496
10
Lee, J., Cho, D., Choi, H., and Choi, J., 2007, Concept of a Korean reference disposal system for spent fuels. Journal of Nuclear Science and Technology, 44(12), 1565-1573. 10.1080/18811248.2007.9711407
11
Malmgren, L., Saiang, D., Töyrä, J., and Bodare, A., 2007, The excavation disturbed zone (EDZ) at Kiirunavaara mine, Sweden - by seismic measurements. Journal of Applied Geophysics, 61, 1-15. 10.1016/j.jappgeo.2006.04.004
12
McDermott, C. I., Fraser-Harris, A., Sauter, M., Couples, G. D., Edlmann, K., Kolditz, O., Lightbody, A., Somerville, J., and Wang, W., 2018, New experimental equipment recreating geo-reservoir conditions in large, fractured, porous samples to investigate coupled thermal, hydraulic and polyaxial stress processes. Scientific Reports, 8(1), 1-12. 10.1038/s41598-018-32753-z30266937PMC6162306
13
Min, K., B., Lee, J., and Stephansson, O., 2013, Implications of thermally-induced fracture slip and permeability change on the long-term performance of a deep geological repository, International Journal of Rock Mechanics and Mining Sciences, 61, 275-288. 10.1016/j.ijrmms.2013.03.009
14
Park, J.W., Park, C., Song, J. W., Park, E. S., and Song, J. J., 2017, Polygonal grain-based distinct element modeling for mechanical behavior of brittle rock. International Journal for Numerical and Analytical Methods in Geomechanics, 41(6), 880-898. 10.1002/nag.2634
15
Park, J.W., Park, C.H., and Lee, C., 2021a, Hydro-Mechanical Modeling of Fracture Opening and Slip using Grain-Based Distinct Element Model: DECOVALEX-2023 Task G (Benchmark Simulation). Tunnel and Underground Space, 31(4), 270-288.
16
Park, J.W., Park, C.H., and Lee, C., 2021b, Voronoi Grain-Based Distinct Element Modeling of Thermally Induced Fracture Slip: DECOVALEX-2023 Task G (Benchmark Simulation). Tunnel and Underground Space, 31(6), 593-609.
17
Park, J.W., Park, C.H., Yoon, J.S., and Lee, C., 2020, Grain-Based Distinct Element Modelling of the Mechanical Behavior of a Single Fracture Embedded in Rock: DECOVALEX-2023 Task G (Benchmark Simulation). Tunnel and Underground Space, 30(6), 573-590.
18
Rutqvist, J., 2020. Thermal management associated with geologic disposal of large spent nuclear fuel canisters in tunnels with thermally engineered backfill. Tunnelling and Underground Space Technology, 102, 103454. 10.1016/j.tust.2020.103454
19
Sun, C., Zhuang, L., Jung, S., Lee, J., and Yoon, J. S., 2021, Thermally induced slip of a single sawcut granite fracture under biaxial loading. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 7(4), 1-13. 10.1007/s40948-021-00293-y
20
Sun, C., Zhuang, L., Yoon, J.S., and Min, K.B., 2022, Thermally induced shear reactivation of critically-stressed smooth and rough granite fractures, Proceedings of EUROCK 2022, https://www.ril.fi/media/2022-eurock/eurock-2022-programme.pdf accessed on 1 December 2022.
21
Swedish Nuclear Fuel and Waste Management Company, 2010, Choice of Method - Evaluation of Strategies and Systems for Disposal of Spent Nuclear Fuel, SKB report, SKB P-10-47.
22
Wang, Z., Wang, T., Wu, S., and Hao, Y., 2021, Investigation of microcracking behaviors in brittle rock using polygonal grain‐based distinct method. International Journal for Numerical and Analytical Methods in Geomechanics, 45(13), 1871-1899. 10.1002/nag.3246
23
Zhuang, L., Sun, C., and Yoon. J., 2022, Laboratory investigation of thermoshearing in critically stressed sawcut and unmated rough granite fractures, DECOVALEX-2023 5th Workshop, Virtual conference.
24
Zoback, M.D. and Gorelick, S.M., 2012, Earthquake triggering and large-scale geologic storage of carbon dioxide, Proceedings of the National Academy of Sciences of the United States of America, 109(26), 10164-10168. 10.1073/pnas.120247310922711814PMC3387039
Information
  • Publisher :Korean Society for Rock Mechanics and Rock Engineering
  • Publisher(Ko) :한국암반공학회
  • Journal Title :Tunnel and Underground Space
  • Journal Title(Ko) :터널과 지하공간
  • Volume : 32
  • No :6
  • Pages :568-585
  • Received Date : 2022-12-19
  • Revised Date : 2022-12-26
  • Accepted Date : 2022-12-26