All Issue

2023 Vol.33, Issue 2

Original Article

30 April 2023. pp. 71-82
Abstract
References
1
ASTM, 1986, Standard Test Method For Unconfined Compressive Strength of Intact Rock Core Specimens, ASTM D2938, American Society for Testing Materials, West Conshohocken, Philadelphia.
2
Belmokhtar, M., Delage, P., Ghabezloo, S., Tang, A. M., Menaceur, H., and Conil, N., 2017, Poroelasticity of the Callovo-Oxfordian Claystone, Rock mechanics and Rock Engineering, 50, 871-889. 10.1007/s00603-016-1137-3
3
Biot, M. A., 1941, General theory of three-dimensional consolidation. Journal of Applied Physics, 12, 155-164. 10.1063/1.1712886
4
Biot, M. A., 1956, Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range, Journal of the Acoustical Society of America, 28(2), 168-178. 10.1121/1.1908239
5
Blanco-Martin, L., Wolters, R., Rutqvist, J., Lux, K. H., and Birkholzer, J. T., 2016, Thermal hydraulic mechanical modeling of a large-scale heater test to investigate rock salt and crushed salt behavior under repository conditions for heat-generating nuclear waste, Computers and Geotechnics, 77, 120-133. 10.1016/j.compgeo.2016.04.008
6
Cheon, D. S., Song, W. K., Kihm, Y, H., Choi, S., Lee, S. K., Hyun, S. P., and Suk, H., 2022, Geoscientific Research of Bedrock for HLW Geological Disposal using Deep Borehole, Tunnel and Underground Space, 32(6), 435-450.
7
Cheon, D. S., Takahashi, M., and Kim, T., 2021, Permeability differences based on three-dimensional geometrical information of void space, Journal of Rock Mechanics and Geotechnical Engineering, 13, 368-376. 10.1016/j.jrmge.2020.04.008
8
Cho, W. J., Kim, J. S., Lee, C., and Choi, H. J., 2012, Current Status of the Numerical Models for the Analysis of Coupled Thermal-Hydrological-Mechanical Behavior of the Engineered Barrier System in a High-level Waste Repository, Journal of Nuclear Fuel Cycle and Waste Technology, 10(4), 281-294. 10.7733/jkrws.2012.10.4.281
9
Deer, A., Howie, W. A., and Zussman, J., 1997, Rock-Forming Minerals: Single-Chain Silicates, Geological Society of London, Volume 2A.
10
Haimson, B., and Lee, H., 2004, Borehole breakouts and compaction bands in two high-porosity sandstones, International Journal of Rock Mechanics & Mining Sciences, 41, 287-301. 10.1016/j.ijrmms.2003.09.001
11
Hart, D. J., and Wang, H. F., 1995, Laboratory measurements of a complete set of poroelastic moduli for Berea sandstone and Indiana limestone, Journal of Geophysical Research, 100(B9), 17741-17751. 10.1029/95JB01242
12
Hart, D. J., and Wang, H. F., 2010, Variation of unjacketed pore compressibility using Gassmann's equation and an overdetermined set of volumetric poroelastic measurements, Geophysics, 75(1), N9-N18. 10.1190/1.3277664
13
Ishutov, S., Hasiuk, F. J., Harding, C., and Gray, J. N., 2015, 3D printing sandstone porosity models, Interpretation, 3(3), SX49-SX61. 10.1190/INT-2014-0266.1
14
ISRM, 2016, Suggested Method for Uniaxial-Strain Compressibility Testing for Reservoir Geomechanics, Rock Mechanics and Rock Engineering, 49, 4153-4178. 10.1007/s00603-016-1055-4
15
Jeong, H., Yim, J., Min, K. B., Kwon, S., Choi, S., and Shin, Y. J., 2022, Case Studies of Indirect Coupled Behavior of Rock for Deep Geological Disposal of Spent Nuclear Fuel, Tunnel and Underground Space, 32(6), 411-434.
16
Kahraman, S., Gunaydin, O., and Fener, M., 2005, The effect of porosity on the relation between uniaxial compressive strength and point load index, International Journal of Rock Mechanics & Mining Sciences, 42, 584-589. 10.1016/j.ijrmms.2005.02.004
17
KSRM, 2005, Standard test method for uniaxial compressive strength of rock, Tunnel and Underground Space, Korean Society for Rock Mechanics, 15(2), 85-86.
18
KSRM, 2006, Standard test method for porosity and density of rock, Tunnel and Underground Space, Korean Society for Rock Mechanics, 2(61), 95-98.
19
Lau, J. S. O., and Chandler, N. A., 2004, Innovative laboratory testing, International Journal of Rock Mechanics & Mining Sciences, 41, 1427-1445. 10.1016/j.ijrmms.2004.09.008
20
Lee, C., Cho, W., Lee, J., and Kim, G. Y., 2019, Numerical Analysis of Coupled Thermo-Hydro-Mechanical (THM) Behavior at Korean Reference Disposal System (KRS) Using TOUGH2-MP/FLAC3D Simulator, Journal of the Nuclear Fuel Cycle and Waste Technology, 17(2), 183-202. 10.7733/jnfcwt.2019.17.2.183
21
Makhnenko, R. M., and Labuz, J. F., 2013, Unjacketed bulk compressibility of sandstone in laboratory experiments, Fifth Biot Conference on Poromechanics, Vienna, Austria, Poromechanics volume, 481-488. 10.1061/9780784412992.057
22
Makhnenko, R. M., and Labuz, J. F., 2016, Elastic and inelastic deformation of fluid-saturated rock, Philosophical Transactions A, 374, 20150422. 10.1098/rsta.2015.042227597783PMC5014295
23
Mavko, G., Mukerji, T., and Dvorkin, J., 2020, The rock physics handbook (3rd ed.), Cambridge University Press. 10.1017/978110833301632719121PMC7431088
24
MTS, 2000, Circumferential Extensometer Strain Calculations, MTS Systems Corporation, USA.
25
Park, C., Kim, T., Park, E. S., Jung, Y. B., and Bang, E. S., 2019, Development and Verification of OGSFLAC Simulator for Hydromechanical Coupled Analysis: Single-phase Fluid Flow Analysis, Tunnel and Underground Space, 29(6), 468-479.
26
Park, D., and Park, C., 2022, Performance Evaluation of OGS-FLAC Simulator for Coupled Thermal-Hydrological-Mechanical Analysis, Tunnel and Underground Space, 32(2), 144-159.
27
Qin, X., Han, D. H., and Zhao, L., 2022, Measurement of Grain Bulk Modulus on Sandstone Samples From the Norwegian Continental Shelf, Journal of Geophysical Research: Solid Earth, 127, e2022JB024550. 10.1029/2022JB024550
28
Rutqvist, J., 2020, Thermal management associated with geologic disposal of large spent nuclear fuel canisters in tunnels with thermally engineered backfill, Tunnelling and Underground Space Technology, 102, 103454. 10.1016/j.tust.2020.103454
29
Rutqvist, J., Barr, D., Birkholzer, J. T., Fujisaki, K., Kolditz, O., Liu, Q. S., Fujika, T., Wang, W., and Zhang, C. Y., 2009, A comparative simulation study of coupled THM processes and their effect on fractured rock permeability around nuclear waste repositories, Environmental Geology, 57, 1347-1360. 10.1007/s00254-008-1552-1
30
Selvadurai, A. P. C., 2021, On the Poroelastic Biot Coefficient for a Granitic Rock, Geosciences, 11(5), 219. 10.3390/geosciences11050219
31
Tarokh, A., Detournay, E., and Labuz, J., 2018, Direct measurement of the unjacketed pore modulus of porous solids, Proceedings of the Royal Society A, 474, 20180602. 10.1098/rspa.2018.0602PMC6283901
32
Yoon, S., Cho, W., Lee, C., and Kim. G. Y., 2018, Thermal Conductivity of Korean Compacted Bentonite Buffer Materials for a Nuclear Waste Repository, Energies, 11, 2269. 10.3390/en11092269
33
Yoon, S., Jeon, J. S., Kim, G. Y., Seong, J. H., and Baik, M. H., 2019, Specific Heat Capacity Model for Compacted Bentonite Buffer Materials, Ann. Nucl. Energy, 125, 18-25. 10.1016/j.anucene.2018.10.045
34
Yoon, S., Kim, M. S., Kim, G. Y., and Lee, S. R., 2021, Contemplation of Relative Hydraulic Conductivity for Compacted Bentonite in a High-Level Radioactive Waste Repository, Ann. Nucl. Energy, 161, 108439. 10.1016/j.anucene.2021.108439
35
Youn, D. J., Sun, C., and Zhung, L., 2022, Numerical Analysis of Laboratory Heating Experiment on Granite Specimen, Tunnel and Underground Space, 32(6), 558-567.
Information
  • Publisher :Korean Society for Rock Mechanics and Rock Engineering
  • Publisher(Ko) :한국암반공학회
  • Journal Title :Tunnel and Underground Space
  • Journal Title(Ko) :터널과 지하공간
  • Volume : 33
  • No :2
  • Pages :71-82
  • Received Date : 2023-02-19
  • Revised Date : 2023-03-13
  • Accepted Date : 2023-03-13