All Issue

2022 Vol.32, Issue 6 Preview Page

Original Article

31 December 2022. pp. 502-517
Abstract
References
1
Armaghani, D.J., Mohamad, E.T., Narayanasamy, M.S., Narita, N., and Yagiz, S., 2017, “Development of hybrid intelligent models for predicting TBM penetration rate in hardrock condition”, Tunn. Undergr. Space Technol., 63, 29-43. 10.1016/j.tust.2016.12.009
2
Breiman, L., 1996. “Bagging predictors”, Machine Learning, 24, 123-140. 10.1007/BF00058655.
3
Breiman, L., Friedman, J., Stone, C.J., and Olshen, R.A., 1984, “Classification and Regression Trees”, CRC press.
4
Bruland, A., 1998, “Hard rock tunnel boring advance rate and cutter wear”, Doctoral Thesis at NTNU, 3, 81.
5
Chen, R., Zhang, P., Wu, H., Wang, Z., and Zhong, Z., 2019, “Prediction of shield tunneling-induced ground settlement using machine learning techniques”, Front. Struct. Civ. Eng., 13, 1363-1378. 10.1007/s11709-019-0561-3
6
Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y., Cho, H., and Chen, K., 2015, Xgboost: extreme gradient boosting, R package version 0.4-2, 1(4), 1-4.
7
Cover, T. and Hart, P., 1967, “Nearest neighbor pattern classification”, in IEEE Transactions on Information Theory, 13(1), 21-27, doi: 10.1109/TIT.1967.1053964. 10.1109/TIT.1967.1053964
8
Friedman, J. H., 2001, Greedy function approximation: a gradient boosting machine, Annals of Statistics, 1189-1232. 10.1214/aos/1013203451
9
Gehring, K., 1995, “Leistungs-und verschleissprognosen im maschinellen tunnelbau”, Felsbau, 13(6), 439-448.
10
Jung, J.-H., Kim, B.-K., Chung, H., Kim, H.-M., and Lee, I.-M., 2019, “A ground condition prediction ahead of tunnel face utilizing time series analysis of shield TBM data in soil tunnel”, Journal of Korean Tunnelling and Underground Space Association, 21(2), 227-242.
11
Kang, T. H., Choi, S.W., Lee, C., and Chang, S.H., 2021, A Study on the Prediction of Rock Classification Using Shield TBM Data and Machine Learning Classification Algorithms, Tunnel and Underground Space, 31(6), 494-507.
12
Kang, T.-H., Choi, S.-W., Lee, C., and Chang, S.-H., 2020, “A Study on Prediction of EPB shield TBM Advance Rate using Machine Learning Technique and TBM Construction Information”, Tunnel and Underground Space, 30(6), 540-550.
13
Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., and Liu, T. Y., 2017, Lightgbm: A highly efficient gradient boosting decision tree, Advances in Neural Information Processing Systems, 30.
14
Kearns, M. and Valiant, L.G., 1994, “Cryptographic limitations on learning Boolean formulae and finite automata”, Journal of the Association for Computing Machinery, 41, 67-95. 10.1145/174644.174647
15
Kim, D., Kwon, K., Pham, K., Oh, J.Y., and Choi, H., 2022, Surface settlement prediction for urban tunneling using machine learning algorithms with Bayesian optimization, Automation in Construction, 140, 104331. 10.1016/j.autcon.2022.104331
16
Kim, T.H., Ko, T.Y., Park, Y.S., Kim, T.K., and Lee, D.H., 2020a, “Prediction of Uniaxial Compressive Strength of Rock using Shield TBM Machine Data and Machine Learning Technique”, Tunnel & Underground Space, 30(3), 214-225.
17
Kim, Y., Hong, J., and Kim, B., 2020b, “Performance comparison of machine learning classification methods for decision of disc cutter replacement of shield TBM”, Journal of Korean Tunnelling and Underground Space Association, 22(5), 575-589.
18
Ko, T.Y., Yoon, H.J., and Son, Y.J., 2014, “A comparative study on the TBM disc cutter wear prediction model”, Journal of Korean Tunnelling and Underground Space Association, 16(6), 533-542. 10.9711/KTAJ.2014.16.6.533
19
La, Y. S., Kim, M.I., and Kim, B., 2019, “Prediction of replacement period of shield TBM disc cutter using SVM”, Journal of Korean Tunnelling and Underground Space Association, 21(5), 641-656.
20
Mokhtari, S. and Mooney, M.A., 2020, “Predicting EPBM advance rate performance using support vector regression modeling”, Tunn. Undergr. Space Technol., 104, 103520. 10.1016/j.tust.2020.103520.
21
Rosenblatt, F., 1958, The perceptron: a probabilistic model for information storage and organization in the brain, Psychological Review, 65(6), 386. 10.1037/h004251913602029
22
Rostami, J. and Ozdemir, L., 1993, “A new model for performance prediction of hard rock TBMs”, Proceedings of the Rapid Excavation and Tunneling Conference (RETC), Boston, U.S.A., pp. 793-809.
23
Rumelhart, D.E., Hinton, G.E., and Williams, R.J., 1986, “Learning Internal Representations by Error Propagation”, David E. Rumelhart, James L. McClelland, and the PDP research group. (editors), Parallel distributed processing: Explorations in the microstructure of cognition, Volume 1: Foundation. MIT Press.
24
Vapnik, V., 1995, “The Nature of Statistical Learning Theory. Springer”, New York. 10.1007/978-1-4757-2440-08555380
25
Yagiz, S. and Karahan, H., 2011, “Prediction of hard rock TBM penetration rate using particle swarm optimization”, Rock Mechanics and Mining Science, 48(3), 427-433. 10.1016/j.ijrmms.2011.02.013
26
Yagiz, S., 2008, “Utilizing rock mass properties for predicting TBM performance in hard rock condition”, Tunn. Undergr. Space Technol., 23(3), 326-339. 10.1016/j.tust.2007.04.011
27
Yang, H., Song, K., and Zhou, J., 2022, “Automated recognition model of geomechanical information based on operational data of tunneling boring machines”, Rock Mech. Rock Eng., 55, 1499-1516. 10.1007/s00603-021-02723-5
Information
  • Publisher :Korean Society for Rock Mechanics and Rock Engineering
  • Publisher(Ko) :한국암반공학회
  • Journal Title :Tunnel and Underground Space
  • Journal Title(Ko) :터널과 지하공간
  • Volume : 32
  • No :6
  • Pages :502-517
  • Received Date :2022. 11. 24
  • Revised Date :2022. 12. 01
  • Accepted Date : 2022. 12. 01