All Issue

2022 Vol.32, Issue 6 Preview Page

Technical Note

31 December 2022. pp. 397-410
Abstract
References
1
ASTM, 2008, Standard test method for determining rock quality designation (RQD) of rock core. ASTM D6032-08, ASTM International, PA, USA.
2
Bandis, S., Lumsden, A., and Barton, N., 1983, Fundamentals of rock joint deformation. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 20(6), 249-268. 10.1016/0148-9062(83)90595-8
3
Barton, N., Lien, R., and Lunde, J., 1974, Engineering classification of jointed rock masses for the design of tunnel support. Rock Mechanics, 6, 189-236. 10.1007/BF01239496
4
Bieniawski, Z.T., 1984, Rock mechanics design in mining and tunneling. A.A. Balkema, Rotterdam.
5
Deere, D.U., 1963, Technical description of rock cores for engineering purposes. 13th Colloquium, International Society for Rock Mechanics, Salzburg, Austria, 16-22.
6
Gardner, W.S., 1987, Design of drilled piers in the Atlantic Piedmont. In: Smith R.W. editor. Foundations and excavations in decomposed rock of the Piedmont province. New York. ASCE.
7
Haftani, M., Chehreh, H.A., Mehinrad, A., and Binazadeh, K., 2016, Practical investigation on use of weighted joint density to decrease the limitations of RQD measurements. Rock Mechanics and Rock Engineering, 49, 1551-1558. 10.1007/s00603-015-0788-9
8
Harrison, J.P., 1999, Selection of the threshold value in RQD assessments. International Journal of Rock Mechanics and Mining Sciences, 36, 673-685. 10.1016/S0148-9062(99)00035-2
9
Hong, S., Kwon, S., Min, K.B., and Ji, S.H., 2021, Effect of excavation and thermal stress on slip zone and aperture change around disposal hole and tunnel in fractured rock. Tunnel and Underground Space, 31(2), 125-144.
10
KAERI, 2010, Fracture zones in deep borehole (DB-01) in KURT. KAERI/TR-4010/2010, KAERI, Deajeon, Korea.
11
KAERI, 2017, Fracture distribution characteristics in KURT facility site. KAERI/TR-6981/2017, KAERI, Deajeon, Korea.
12
KAERI, 2021, Lithological analysis of DB-2 borehole around KURT with depth. KAERI/TR-9012/2021, KAERI, Deajeon, Korea.
13
KIGAM, 2019, Development of nationwide geoenvironmental maps for HLW geological disposal. GP2017-009-2019, KIGAM, Daejeon, Korea.
14
Ku, C.Y., Hsu, S.M., Chiou, L.B., and Lin, G.F., 2009, An empirical model for estimating hydraulic conductivity of highly disturbed clastic sedimentary rocks in Taiwan. Engineering Geology, 109(3-4), 213-223. 10.1016/j.enggeo.2009.08.008
15
Kulhawy, F.H. and Goodman, R.E., 1987, Foundations in rock. In: Bell F.G. editor. Ground Engineer’s reference book. Butterworths, London.
16
Lee, H., 1999, A study for the mechanical and hydraulic behavior of rock joints under cyclic shear loading. Seoul National University, Doctoral dissertation.
17
Lee, C., Yoon, S., Cho, W.J., Jo, Y., Lee, S., Jeon, S., and Kim, G.Y., 2019, Study on thermal, hydraulic, and mechanical properties of KURT granite and Gyeongju bentonite, Journal of Nuclear Fuel Cycle and Waste Technology, 17, 65-80. 10.7733/jnfcwt.2019.17.S.65
18
Palmstrom, A., 2005, Measurements of and correlations between block size and rock quality designation(RQD). Tunnelling and Underground Space Technology, 20, 362-377. 10.1016/j.tust.2005.01.005
19
Priest, S.D., 1993, Discontinuity analysis for rock engineering. Chapman & Hill, London, UK. 10.1007/978-94-011-1498-1
20
Priest, S.D., and Hudson, J.A., 1976, Discontinuity spacings in rock. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 13(8), 135-148. 10.1016/0148-9062(76)90818-4
21
Qureshi, M.U., Khan, K.M., Bessaih, N., Al-Mawali, K., and Al-Sadrani, K., 2014, An empirical relationship between in-situ permeability and RQD of discontinuous sedimentary rocks. Electronic Journal of Geotechnical Engineering, 19, 4781-4790.
22
Sen, Z., 1990, Cumulative core index for rock quality evaluations. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 27(2), 87-94. 10.1016/0148-9062(90)94857-P
23
Singh, B., Goel, R.K., Mehrotra, V.K., Garg, S.K., and Allu, M.R., 1998, Effect of intermediate principal stress on strength of anisotropic rock mass. Tunnelling and Underground Space Technology, 13(1), 71-79. 10.1016/S0886-7798(98)00023-6
24
SKB, 1998, Parameters of importance to determine during geoscientific site investigation. TR-98-02, SKB, Stockholm, Sweden.
25
Sonmez, H., Ercanoglu, M., and Dagdelenler, G., 2022, A novel approach to structural anisotropy classification for jointed rock masses using theoretical rock quality designation formulation adjusted to joint spacing. Journal of Rock Mechanics and Geotechnical Engineering, 14, 329-345. 10.1016/j.jrmge.2021.08.009
26
Zhang, L., and Einstein, H.H., 2004, Using RQD to estimate the deformation modulus of rock masses. International Journal of Rock Mechanics and Mining Sciences, 41(2), 337-341. 10.1016/S1365-1609(03)00100-X
27
Zheng, J., Yang, X., Lu, Q., Zhao, Y., Deng, J., and Ding, Z., 2018, A new perspective for the directivity of rock quality designation (RQD) and an anisotropic index for jointing degree for rock masses. Engineering Geology, 240, 81-94. 10.1016/j.enggeo.2018.04.013
28
Zimmerman, R., and Bodvarsson G., 1996, Hydraulic conductivity of rock fractures, Transport in Porous Media, 23(1), 1-30. 10.1007/BF00145263
Information
  • Publisher :Korean Society for Rock Mechanics and Rock Engineering
  • Publisher(Ko) :한국암반공학회
  • Journal Title :Tunnel and Underground Space
  • Journal Title(Ko) :터널과 지하공간
  • Volume : 32
  • No :6
  • Pages :397-410
  • Received Date : 2022-12-07
  • Revised Date : 2022-12-12
  • Accepted Date : 2022-12-13