All Issue

2020 Vol.30, Issue 5 Preview Page

Original Article

October 2020. pp. 462-472
Anderson, Don L., 1996, Petrology: The Study of Igneous, Sedimentary and Metamorphic Rocks, American Scientist, 84, 398+.
Andrew, Ng., 2019, Machine Learning course.
Baykan, N.A. and Yilmaz N., 2010, Mineral identification using color spaces and artificial neural networks, Computers and Geosciences, 36, 91-97. 10.1016/j.cageo.2009.04.009
Chatterjee, S., 2013, Vision-based rock-type classification of limestone using multi-class support vector machine, Appl. Intell, 39, 14-27. 10.1007/s10489-012-0391-7
Chatterjee, S., Bhattacherjee, A., Samanta, B. and Pal, S.K., 2008, Rock-type classification of an iron ore deposit using digital image analysis technique, Int. J. Min. Miner. Eng, 1, 22. 10.1504/IJMME.2008.020455
Forman, G. and Scholz, M., 2010, Apples-to-apples in cross-validation studies: Pitfalls in classifier performance measurement, ACM Sigkdd Explor. Newsl, 12, 49-57. 10.1145/1882471.1882479
Guo, C. and Liu, Y., 2014, Recognition of rock images based on multiple color spaces, Sci. Technol. Eng, 14, 247-251 and 255.
He, K., Zhang, X., Ren, S., and Sun, J., 2015, Deep residual learning for image recognition, arXiv preprint arXiv: 1512.03385. 10.1109/CVPR.2016.9026180094
Jiang, Y., 2017, Detecting Geological Structures in Seismic Volumes Using Deep Convolutional Neural Networks, Master Thesis.
LeCun, Y., Bottou, L., Orr, G.B. and Müller, K.R., 1998, Efficient BackProp. In: Orr G.B., Müller KR. (eds) Neural Networks: Tricks of the Trade, Lecture Notes in Computer Science, 1524. 10.1007/3-540-49430-8_2
Patel, A.K., Chatterjee, S., Gorai, A.K., 2017, Development of online machine vision system using support vector regression (SVR) algorithm for grade prediction of iron ores, 2017 Fifteenth IAPR International Conference on Machine Vision Applications (MVA). IEEE, 149-152. 10.23919/MVA.2017.7986823
Patel, A.K., Gorai, A.K., Chatterjee, S., 2016, Development of Machine Vision-based System for Iron Ore Grade Prediction using Gaussian Process Regression (GPR), Pattern Recognit. Inf. Process, 45-48.
Pires de Lima, R., Bonar, A., Coronado, D.D., Marfurt, K., and Nicholson, C, 2019, Deep convolutional neural networks as a geological image classification tool, The Sedimentary Record, 17(2), 4-9. 10.2110/sedred.2019.2.4
Ran, X., Xue, L., Zhang, Y., Liu, Z., Sang, X. and He, X., 2019, Rock Classification from Field Image Patches Analyzed Using a Deep Convolutional Neural Network, Mathematics, 7, 755. 10.3390/math7080755
Shu, L., McIsaac, K., Osinski, G.R. and Francis, R., 2017, Unsupervised feature learning for autonomous rock image classification, Computers and Geosciences, 106, 10-17. 10.1016/j.cageo.2017.05.010
Wang, C., Li, Y., Fan, G., Chen, F., and Wang, W., 2018, Quick recognition of rock images for mobile applications, J. Eng. Sci. Technol. Rev, 11, 111-117. 10.25103/jestr.114.14
Zhang, Y., Li, M. and Han, S., 2018, Automatic identification and classification in lithology based on deep learning in rock images, Acta Petrol. Sin, 34, 333-342.
Zhang, Y., Li, M., Han, S., Ren, Q., and Shi, J., 2019, Intelligent Identification for Rock-Mineral Microscopic Images Using Ensemble Machine Learning Algorithms, Sensors (Basel, Switzerland), 19(18), 3914. 10.3390/s1918391431514321PMC6767609
  • Publisher :Korean Society for Rock Mechanics and Rock Engineering
  • Publisher(Ko) :한국암반공학회
  • Journal Title :Tunnel and Underground Space
  • Journal Title(Ko) :터널과 지하공간
  • Volume : 30
  • No :5
  • Pages :462-472