All Issue

2022 Vol.32, Issue 6 Preview Page

Original Article

31 December 2022. pp. 549-557
Abstract
References
1
Behan, A., 2004, Digital Photogrammetry: Theory and Applications. Photogrammetric Record -Photogramm Rec, 19, 250-251, doi: 10.1111/j.0031-868X.2004.282_1.x. 10.1111/j.0031-868X.2004.282_1.x
2
Chazette, P., Totems, J., Hespel, L., and Bailly, J., 2016, Principle and Physics of theLiDAR Measurement. N. Baghdadi, M. Zribi (Eds), Optical Remote Sensing of Land Surfaces, iSTE Press and Elsevier. 10.1016/B978-1-78548-102-4.50005-3
3
Dueholm, K. S., 1992, Geologic Photogrammetry using standard small-frame cameras. Rapp. Grønlands geol. Unders., 156. 10.34194/rapggu.v156.8187
4
Đurić, I., Vasiljević, I., Obradović, M., Stojaković, V., Kićanović, J., and Obradović, R., 2021, Comparative Analysis of Open-Source and Commercial Photogrammetry Software forCultural Heritage. Proceedings of the International Conferenceon Education and Research in Computer Aided Architectural Design in Europe, 2, 243-252.
5
Griwodz, C., Gasparini, S., Calvet, L., Gurdjos, P., Castan, F., Maujean, B., De Lillo, G., and Lanthony, Y., 2021, Alicevision meshroom: An open-source 3d reconstruction pipeline. In Proceedings of the 12th ACM Multimedia Systems Conference, pp. 241-247. 10.1145/3458305.3478443
6
ISRM, 1978, Suggested methods for the quantitative description of discontinuities in rock masses. Int J Rock Mech Min Sci Geomech Abstr., 15(6), 319-368.
7
Jaeger, J.C., and Cook, N.G.W., 1979, Fundamentals of Rock Mechanics. 3rd ed. Halsted Press, NY. 112p.
8
Paixão, A., Muralha, J., Resende, R. et al., 2022, Close-Range Photogrammetry for 3D Rock Joint Roughness Evaluation. Rock Mech Rock Eng, 55, 3213-3233. 10.1007/s00603-022-02789-9.
9
Riquelme, A.J., Abellán, A., Tomás, R., and Jaboyedoff, M., 2014, A new approach for semi-automatic rock mass joints recognition from 3D point clouds. Comput. Geosci., 68, 38-52. 10.1016/j.cageo.2014.03.014
10
Sturzenegger, M. and Stead, D., 2009a, Close-range terrestrial digital photogrammetry and terrestrial laser scanning for discontinuity characterization on rock cuts. Engineering Geology, 106, 163-182. 10.1016/j.enggeo.2009.03.004
11
Sturzenegger, M., Stead, D., Beveridge A., and Lee, S., 2009b, Long-range terrestrial digital photogrammetry for discontinuity characterization at Palabora open-pit mine. In: Didrichs, M., Grasselli, G. (eds), Proceedings of the 3rd CANUS Rock Mechanics Symposium, ROCKGEN09, May 2009, Toronto, p. 3984.
12
Sturzenegger, M. and Stead, D., 2009c, Quantifying discontinuity orientation and persistence on high mountain rock slopes and large landslides using terrestrial remote sensing techniques. Natural Hazards and Earth System Sciences, 9, 267-287. 10.5194/nhess-9-267-2009
13
Tannant, D., 2015, Review of photogrammetry-based techniques fo r characterization and hazard assessment of rock faces. Int. J.Georesour. Environ. IJGE, 1, 76-87. 10.15273/ijge.2015.02.009
Information
  • Publisher :Korean Society for Rock Mechanics and Rock Engineering
  • Publisher(Ko) :한국암반공학회
  • Journal Title :Tunnel and Underground Space
  • Journal Title(Ko) :터널과 지하공간
  • Volume : 32
  • No :6
  • Pages :549-557
  • Received Date : 2022-12-14
  • Revised Date : 2022-12-19
  • Accepted Date : 2022-12-20