All Issue

2020 Vol.30, Issue 6 Preview Page

Original Article

December 2020. pp. 540-550
Armaghani, D.J., Mohamad, E.T., Narayanasamy, M.S., Narita, N., Yagiz, S., 2017, Development of hybrid intelligent models for predicting TBM penetration rate in hardrock condition, Tunn. Undergr. Space Technol. Vol. 63, pp. 29-43. 10.1016/j.tust.2016.12.009
Breiman, L, Friedman, J, Stone, C.J, and Olshen, R.A., 1984, Classification and Regression Trees. CRC press.
Breiman, L., 1996, Bagging Predictors, Machine Learning, Vol. 24, No. 2, pp. 123-140. 10.1007/BF00058655. 10.1007/BF00058655
Breiman, L., 2001, Random Forests, Machine Learning, Vol. 45, No. 1, pp. 5-32. 10.1023/A:1010933404324. 10.1023/A:1010933404324
Chin, J. H. J., 2020, In Pursuit of the Autonomous TBM, Tunneling Journal, February/March 2020, pp. 18-22.
Gholamnejad, J., Narges, T., 2010, Application of artificial neural networks to the prediction of tunnel boring machine penetration rate, Min. Sci. Technol. (China) Vol. 20, No.5, pp. 727-733. 10.1016/S1674-5264(09)60271-4
Grima, M.A., Bruines, P.A., Verhoef, P.N.W., 2000, Modeling tunnel boring machine performance by neuro-fuzzy methods, Tunn. Undergr. Space Technol. Vol. 15, No.3, pp. 259-269. 10.1016/S0886-7798(00)00055-9
Kim, T. H., Ko, T. Y., Park, Y. S., Kim, T. K., Lee, D. H., 2020, Prediction of Uniaxial Compressive Strength of Rock using Shield TBM Machine Data and Machine Learning Technique, TUNNEL & UNDERGROUND SPACE, Vol.30, No.3, pp. 214-225.
Mahdevari, S., Shahriar, K., Yagiz, S., Shirazi, M.A., 2014, A support vector regression model for predicting tunnel boring machine penetration rates, Int. J. Rock Mech. Min., Vol. 74, pp. 214-229. 10.1016/j.ijrmms.2014.09.012
Mokhtari, S., Mooney, M.A., 2020, Predicting EPBM advance rate performance using support vector regression modeling, Tunn. Undergr. Space Technol. Vol.104, 103520. 10.1016/j.tust.2020.103520
Salimi, A., Rostami, J., Moormann, C., Delisio, A., 2016, Application of non-linear regression analysis and artificial intelligence algorithms for performance prediction of hard rock TBMs, Tunn. Undergr. Space Technol. Vol.58, pp. 236-246 10.1016/j.tust.2016.05.009
Vapnik, V.N., 1995, The Nature of Statistical Learning Theory, Springer, New York, pp. 119-166. 10.1007/978-1-4757-2440-0_6
Yagiz, S., Gokceoglu, C., Sezer, E., Iplikci, S., 2009, Application of two non-linear prediction tools to the estimation of tunnel boring machine performance, Eng. Appl.Artif. Intell. Vol.22 (4-5), pp. 808-814. 10.1016/j.engappai.2009.03.007
Yagiz, S., Karahan, H., 2011, Prediction of hard rock TBM penetration rate using particle swarm optimization, Int. J. Rock Mech. Min. Sci. Vol.48, No.3, pp. 427-433. 10.1016/j.ijrmms.2011.02.013
  • Publisher :Korean Society for Rock Mechanics and Rock Engineering
  • Publisher(Ko) :한국암반공학회
  • Journal Title :Tunnel and Underground Space
  • Journal Title(Ko) :터널과 지하공간
  • Volume : 30
  • No :6
  • Pages :540-550
  • Received Date :2020. 11. 26
  • Revised Date :2020. 11. 30
  • Accepted Date : 2020. 11. 30