All Issue

2021 Vol.31, Issue 4 Preview Page

Original Article

31 August 2021. pp. 270-288
Abstract
References
1
Asadi, M.S., Rasouli, and V., Barla, G., 2012, A bonded particle model simulation of shear strength and asperity degradation for rough rock fractures. Rock Mech. Rock Eng. 45(5), 649-675. 10.1007/s00603-012-0231-4
2
Birkholzer, J.T. and Bond, A.E., 2020, DECOVALEX-2023 Introduction. Presented in DECOVALEX-2023 2nd Workshop, November 16-20 2020, Virtual conference.
3
Birkholzer, J.T., Tsang, C.F., Bond, A.E., Hudson, J.A., Jing, L., and Stephansson, O., 2019, 25 years of DECOVALEX-Scientific advances and lessons learned from an international research collaboration in coupled subsurface processes. International Journal of Rock Mechanics and Mining Sciences 122, 103995. 10.1016/j.ijrmms.2019.03.015
4
Castro-Filgueira, U., Alejano, L.R., and Ivars, D.M., 2020, Particle flow code simulation of intact and fissured granitic rock samples. Journal of Rock Mechanics and Geotechnical Engineering 12(5), 960-974. 10.1016/j.jrmge.2020.01.005
5
Cho, N., Martin, C.D., and Sego, D.S., 2007, A clumped particle model for rock. Int. J. Rock Mech. Min. Sci. 44, 997-1010. 10.1016/j.ijrmms.2007.02.002
6
Cundall, P.A., 1988, Formulation of a three-dimensional distinct element model-Part I. A scheme to detect and represent contacts in a system composed of many polyhedral blocks, In International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts 25(3), 107-116. 10.1016/0148-9062(88)92293-0
7
Fu, T.F., Xu, T., Heap, M.J., Meredith, P.G., and Mitchell, T.M., 2020, Mesoscopic time-dependent behavior of rocks based on three-dimensional discrete element grain-based model. Computers and Geotechnics 121, 103472. 10.1016/j.compgeo.2020.103472
8
Geuzaine, C. and Remacle, J.F., 2009, Gmsh: A 3‐D finite element mesh generator with built‐in pre‐and post‐processing facilities. International journal for numerical methods in engineering 79(11), 1309-1331. 10.1002/nme.2579
9
Ghazvinian, E., Diederichs, M.S., and Quey, R., 2014, 3D random Voronoi grain-based models for simulation of brittle rock damage and fabric-guided micro-fracturing. Journal of Rock Mechanics and Geotechnical Engineering 6(6), 506-521. 10.1016/j.jrmge.2014.09.001
10
Gu, D. and Huang, D., 2016, A complex rock topple-rock slide failure of an anaclinal rock slope in the Wu Gorge, Yangtze River, China. Engineering Geology 208. 165-180. 10.1016/j.enggeo.2016.04.037
11
Hu, Z., Xu, N., Li, B., Xu, Y., Xu, J., and Wang, K., 2020, Stability Analysis of the Arch Crown of a Large-Scale Underground Powerhouse During Excavation. Rock Mechanics and Rock Engineering 53(6), 1-9. 10.1007/s00603-020-02077-4
12
Itasca Consulting Group Inc., 2014, UDEC (Universal Distinct Element Code) version 6.0. Minneapolis: Itasca CGI.
13
Itasca Consulting Group Inc., 2017, 3DEC (3 Dimensional Distinct Element Code) version 5.2. Minneapolis: Itasca CGI.
14
Itasca Consulting Group Inc., 2021, PFC (Particl Flow Code) online manual. Available at https://www.itascacg.com/software/PFC.
15
Lan, H.X., Martin, C.D., and Hu, B., 2010, Effect of heterogeneity of brittle rock on micromechanical extensile behavior during compression loading. Journal of Geophysical Research: Solid Earth 115, B1. 10.1029/2009JB006496
16
Li, A., Dai, F., Xu, N., Gu, G., and Hu, Z., 2019, Analysis of a complex flexural toppling failure of large underground caverns in layered rock masses. Rock Mechanics and Rock Engineering 52(9), 3157-3181. 10.1007/s00603-019-01760-5
17
Li, Z. and Rao, Q.H., 2021, Quantitative determination of PFC3D microscopic parameters. Journal of Central South University, 28(3), 911-925. 10.1007/s11771-021-4653-6
18
Lisjak, A., Tatone, B.S., Grasselli, G., and Vietor, T., 2014, Numerical modelling of the anisotropic mechanical behaviour of opalinus clay at the laboratory-scale using FEM/DEM. Rock mechanics and rock engineering 47(1), 187-206. 10.1007/s00603-012-0354-7
19
Ma, Q., Tan, Y.L., Liu, X.S., Zhao, Z.H., and Fan, D.Y., 2021, Mechanical and energy characteristics of coal-rock composite sample with different height ratios: a numerical study based on particle flow code. Environmental Earth Sciences 80(8), 1-14. 10.1007/s12665-021-09453-5
20
Mahabadi, O.K., Randall, N.X., Zong, Z., and Grasselli, G., 2012, A novel approach for micro-scale characterization and modeling of geomaterials incorporating actual material heterogeneity. Geophysical Research Letters 39(1), 1-6. 10.1029/2011GL050411
21
Park, J.W., Park, C.H., Yoon, J., and Lee, C., 2020, Grain-based distinct element modelling of the mechanical behavior of a single fracture embedded in rock: DECOVALEX-2023 Task G (Benchmark simulation). Tunnel & Underground Space 30(6), 573-590.
22
Park, J.W., Park, C., Song, J.W., Park, E.S., and Song, J.J., 2017, Polygonal grain-based distinct element modeling for mechanical behavior of brittle rock. International Journal for Numerical and Analytical Methods in Geomechanics 41(6), 880-898. 10.1002/nag.2634
23
Park, J.W. and Song, J.J., 2009, Numerical simulation of a direct shear test on a rock joint using a bonded-particle model. Int. J. Rock Mech. Min. Sci. 46, 131-1328. 10.1016/j.ijrmms.2009.03.007
24
Parker, A.P., 1981. The mechanics of fracture and fatigue: An introduction. London and New York, E. & F. N. Spon, Ltd., pp. 174.
25
Pollard, D.D. and Segall, P., 1987, Theoretical displacements and stresses near fractures in rock: with applications to faults, joints, veins, dikes, and solution surfaces. In: Fracture mechanics of rock. pp. 277-347. 10.1016/B978-0-12-066266-1.50013-2
26
Potyondy, D.O., 2010, A grain-based model for rock: approaching the true microstructure, In: Proceedings of Bergmekanikk I Norden. Kongsberg, Norway.
27
Potyondy, D.O., 2012, A flat-jointed bonded-particle material for hard rock, In: Proceedings of 46th U.S. Rock mechanics/ geomechanics symposium, Chicago, USA, ARMA 12-501.
28
Potyondy, D.O., 2013, PFC3D flat joint contact model version1, Itasca Consulting Group, Minneapolis, Technical Memorandum ICG7234-L.
29
Potyondy, D.O., 2015, The bonded-particle model as a tool for rock mechanics research and application: current trends and future directions. Geosystem Eng. 18, pp. 1-28. 10.1080/12269328.2014.998346
30
Potyondy, D.O. and Cundall, P.A., 2004, A bonded-particle model for rock, Int. J. Rock Mech. Min. Sci. 41(8), 1329-1364. 10.1016/j.ijrmms.2004.09.011
31
Potyondy, D.O. and Hazzard, J.F., 2008, Effects of stress and induced cracking on the static and dynamic moduli of rock, In: Proceedings of First International FLAC/DEM Symposium, Minneapolis, USA, pp. 147-156.
32
Wang, Z., Wang, T., Wu, S. and Hao, Y., 2021, Investigation of microcracking behaviors in brittle rock using polygonal grain‐based distinct method. International Journal for Numerical and Analytical Methods in Geomechanics. 10.1002/nag.3246
33
Wu, Z., Ma, L., and Fan, L., 2018, Investigation of the characteristics of rock fracture process zone using coupled FEM/DEM method. Engineering Fracture Mechanics 200, 355-374. 10.1016/j.engfracmech.2018.08.015
34
Yoon, J., Zimmermann, G., Zang, A., and Stephansson, O., 2015, Discrete element modeling of fluid injection-induced seismicity and activation of nearby fault 1. Can. Geotech. J. 52(10), 1457-1465. 10.1139/cgj-2014-0435
Information
  • Publisher :Korean Society for Rock Mechanics and Rock Engineering
  • Publisher(Ko) :한국암반공학회
  • Journal Title :Tunnel and Underground Space
  • Journal Title(Ko) :터널과 지하공간
  • Volume : 31
  • No :4
  • Pages :270-288
  • Received Date : 2021-08-13
  • Revised Date : 2021-08-19
  • Accepted Date : 2021-08-19